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Abstract

This paper is an exposition of the theorem prover Arend developed at JetBrains Research. Arend
language has been designed to facilitate the formalization of mathematics within the framework of
univalent foundations and with the focus on constructive mathematics. It is based on a variant of
homotopy type theory with cubical syntax that is more closely aligned with Martin-Löf Type Theory
(MLTT) than fully computational cubical type theories, while still retaining some of their computational
properties useful in practice. Among the most notable features of the Arend language is its powerful
system of classes and records supporting subsumptive subtyping, partial implementations and anonymous
extensions, which provides extensive flexibility for constructing hierarchies of definitions. Formalization
in Arend is streamlined by the IntelliJ Arend plugin, which transforms IntelliJ IDEA into a full-fledged
integrated development environment (IDE) for the Arend language. The main Arend library arend-lib
includes formalizations in constructive algebra, topology and synthetic homotopy theory.

1 Introduction

Interactive theorem provers (ITPs) are software tools designed to assist in the creation, verification, and
exploration of formal proofs by providing a rigorous framework for encoding and checking logical reasoning.
They leverage formal systems, such as type theory or higher-order logic, to provide an interactive environment
where users can encode theorems, construct proofs, and validate their correctness with absolute precision. By
eliminating human error, ITPs have become invaluable not only in formalizing complex mathematical results
but also in verifying the correctness of critical software and hardware systems, bridging the gap between pure
mathematics and practical applications. Modern ITPs, such as Coq, Agda, Lean, and HOL-based systems like
Isabelle and HOL4, enable a wide range of use cases, from verifying algorithms and protocols to formalizing
groundbreaking theorems such as the Four-Color Theorem and the Feit-Thompson Theorem.

Central to many ITPs is dependent type theory, a formalism that unifies programs and proofs within a
single framework. Systems like Coq, Lean and Agda, built upon the Calculus of Inductive Constructions
(CIC) or Martin-Löf Type Theory (MLTT), exemplify the power of dependent type theory in encoding rich
mathematical structures and reasoning about them formally. Whereas Coq and Lean (based on CIC) do not
particularly favor constructivism (Lean even has the axioms of choice and excluded middle built-in), Agda
(based on MLTT) leans more towards constructive mathematics. HOL-based systems, rooted in classical
higher-order logic, offer an alternative approach that is more familiar to traditional mathematicians and
computer scientists. However, dependent type theories surpass HOL in expressiveness by allowing types to
depend on values, enabling constructive reasoning with computational interpretations via term reductions,
and unifying proofs and programs within a single framework, capabilities that HOL’s classical framework
lacks.

In the early 2000s, the fields of formalized mathematics and dependently typed languages — previously
limited mostly to communities of computer scientists and logicians — began to draw significant attention
from pure mathematicians. A pivotal moment in this shift was the formulation of Univalent Foundations
(UF) of mathematics by Vladimir Voevodsky between 2006 and 2009. This new approach, inspired by the
homotopy semantics of MLTT, interprets types as homotopy types1 rather than as sets. In particular, the

1The canonical geometric example of a homotopy type is a topological space up to weak homotopy equivalence. Other
combinatorial examples include presheaves such as simplicial or cubical sets up to a suitable equivalence.
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equality type a =A b is interpreted as the type of paths between a and b in A, for p, q : a =A b, the type
p =a=Ab q is the type of homotopies between p and q in A, and so on. The homotopy semantics suggested
that MLTT can serve as a basis for a formal system where the notion of a homotopy type is taken as primitive
instead of the notion of a set. This led to formulation of Homotopy Type Theory (HoTT) as an extension of
MLTT with univalence axiom (A ∼= B) ∼= (A = B), which allows to identify two equivalent types, and higher
inductive types, a certain generalization of inductive types allowing higher path constructors.

The impact of HoTT/UF on formalization of mathematics is two-fold:

1. Many standard constructions and theorems in homotopy theory can now be elegantly formalized using
HoTT, where homotopy types serve as primitives rather than sets. This method, known as synthetic
homotopy theory, utilizes the equality type to encapsulate complex homotopy structures. Set-theoretic
versions of these formalizations tend to be more cumbersome. This synthetic approach not only simplifies
the formalization of existing theories but also has the potential to reshape many areas of modern
mathematics by adopting a higher categorical perspective over traditional set-theoretic approaches.

2. HoTT/UF provides a framework for set-theoretic formalization where sets are homotopy types with
trivial homotopy structure and propositions are sets with at most one element. One can do formalizations
completely confined to this set theory fragment of HoTT. As such a framework HoTT/UF augments
MLTT with a fair degree of extensionality :

(a) Quotients can be easily defined in HoTT using higher inductive types. Meanwhile quotients are
notoriously hard to deal with in pure MLTT due to intensionality of equality.

(b) Univalence axiom implies propositional and function extensionality: any two equivalent propositions
are equal and any two pointwise equal functions are equal.

(c) Univalence axiom implies structure identity principle: isomorphic structures (such as groups,
topological spaces and so on) are equal.

This approach can, in principle, be implemented using an ITP based on MLTT, such as Coq or Agda2,
by merely appending univalence and higher inductive types as axioms devoid of any computational content.
However, this severely impairs the computational properties of MLTT, which are crucial for practical
formalization efforts. Additionally, there are several other problematic issues stemming from the fact that
these ITPs were not originally designed with native support for HoTT/UF. For example, the universe of
propositions Prop in Coq or Agda does not correspond to the type of propositions as defined in HoTT/UF.

Theorem prover Arend. The development of Arend began in 2015 at JetBrains Research with the
goal of creating a modern ITP featuring native support for HoTT/UF. Its two principal components are
the Arend language, which is based on a variant of MLTT specifically tailored to integrate seamlessly with
HoTT/UF, and a suite of tooling provided by the Arend plugin for IntelliJ IDEA. The key components of
the Arend ITP are:

1. Type theory. At the core of the type theory of Arend is the homotopy type theory with interval type
(HoTT-I), formulated by Valery Isaev in 2014. It consists of two components:

(a) Variant of MLTT with the interval type: a minor, more extensional modification of MLTT
that incorporates a primitive type I for the interval. The equality type (or path type) is defined in
terms of I. Function extensionality is derivable and is fully computational in this theory. This
setup gives rise to a variant of cubical syntax: n-dimensional homotopies in a type A are naturally
represented in HoTT-I as functions In → A.

(b) Univalence axiom: a form of univalence axiom, which is a built-in axiom with some computational
rules.

2An important caveat is that the ITP should not incorporate built-in features that contradict the univalence axiom. For
instance, Lean is unsuitable for UF as it incorporates a strong form of the axiom of choice built-in.
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The native support for HoTT/UF in the type theory of Arend is further amplified by the following
extensions of HoTT-I:

(a) Inductive types with conditions. Using the primitive I, a path constructor can be defined
simply as a constructor pcon (i : I) with an interval type parameter, or multiple parameters for
higher-dimensional homotopies. The only difference with an ordinary constructor is that there
could be conditions that dictate how pcon evaluates at the ends of the interval to other constructors:
pcon left ⇒ con1, pcon right ⇒ con2. In particular, it implies con1 = con2 but does not lead to
contradictions as in the case of standard inductive types in MLTT, thanks to a modified elimination
principle that requires the preservation of conditions. This provides support for higher inductive
types and, in particular, quotients with computational behavior.

(b) Universes Prop and Set matching h-propositions and h-sets. Arend incorporates an im-
predicative universe Prop that captures the logic of h-propositions and a predicative hierarchy of
universes Set 0 ⊂ Set 1 ⊂ . . . for h-sets. The universes Prop and Set provide a syntactic framework
that facilitates working within the set theory domain, akin to the elementary topos of h-sets, and
distinctively delineate the set-level aspect of the type theory from the higher levels, ensuring that
set-theoretic formalization is confined strictly to the subtheory prescribed by these universes.

(c) Polymorphism for homotopy levels. Arend introduces a mechanism for polymorphism based
on homotopy level. This allows a single polymorphic definition to be instantiated across universes
of varying homotopy level, including Prop, Setn, and the universes of all types Typen. This feature
enables greater flexibility and reusability of definitions.

The above outlines the core fragment of Arend’s type theory as it relates to HoTT/UF. Its key properties
include:

(a) Computational behavior. Unlike MLTT augmented merely with axioms for univalence and
higher inductive types, Arend’s type theory includes a number of computational reduction rules for
involved terms, which prove crucial for practical usage. However, it lacks sufficient computational
rules to render the theory fully computational: the MLTT property that every closed term of
type Nat evaluates to a canonical number does not hold in Arend. The core theory of Arend
represents one of the earliest and simplest forms of cubical type theory, in which the interval still
functions as a type. More advanced, fully computational cubical type theories have since evolved,
in which univalence is derivable. However, these approaches are considerably more complex,
featuring two-level theories where the interval I is not a type. While the development of such fully
computational theories is of theoretical interest, the complexity of two-level frameworks do not
currently justify their use in practical applications. The type theory of Arend could potentially be
adjusted to enhance its computational aspects, but practical experiences in formalization have not
demonstrated a significant need for such enhancements.

(b) Constructivity. The type theory of Arend is inherently constructive. In its core theory, the law
of excluded middle does not hold, and the axiom of choice is valid only in the form of unique
choice. While the axioms of classical logic can be consistently added and utilized in libraries, the
main Arend library, arend-lib, is dedicated to constructive mathematics, and no standard metas
utilize any classical axioms.

Finally, the type theory of Arend includes the following extensions, which are of significant practical
importance for formalization and yet are not present in Coq, Lean, or Agda:

(a) Records with partial implementations and anonymous extensions. In Arend, type classes
and records support multiple inheritance with partial implementations. Specifically, if record D
extends record C, it is possible to implement an arbitrary subset of C’s fields within D. For
instance, for a field f of C, its extension D may include an expression f ⇒ a that specifies a value
a for f . This flexibility blurs the traditional distinction between parameters and fields in classes
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and records, enabling more versatile hierarchical structure development. Additionally, Arend
allows for the creation of records and classes on-the-fly as an anonymous extension, denoted as
C{f1 ⇒ a1, . . . , fk ⇒ ak}. This feature facilitates dynamic customization of types without the
need to define fully specified new classes or records, thus enhancing modularity and reusability.

(b) Array types. Arend introduces a specialized type for arrays, denoted as ArrayA, where A : Type.
This type encompasses several concepts including the type of lists of elements of type A, the
type of vectors of elements of type A of fixed length n and the type Finn → A of functions
from a finite set of cardinality n to A. The type Array is a record with fields A : Type, len : Nat
and at : Fin len→ A. The anonymous extension ArrayA describes arrays of various lengths with
elements of type A, and the extension ArrayAn specifies arrays of a fixed length n. A crucial
feature of the array type in Arend is its computational extensionality: if two arrays of equal length
are elementwise computationally identical, then they are considered computationally equivalent as
entire structures.

2. Proof terms. In Arend, proof terms do not need to be fully detailed. Users can take advantage
of the “inference of implicit arguments” mechanism, which allows them to omit some arguments in
expressions (more concretely, the ones that can be inferred via the “inference of implicit arguments
mechanism” built into the Arend type checker). Additionally, users can employ metas such as rewrite
to construct particularly complicated parts of expressions. Metas should be seen as “expression-level
tactics”, meaning they can be seamlessly interwoven with standard Arend term constructs. In other
words, unlike Coq, Arend does not have separate “proof” and “term” levels – everything (including
proofs) in Arend happens on the “term” level.

3. IntelliJ IDEA plugin. The easiest way to use Arend is through the tooling provided by the Arend
plugin for IntelliJ IDEA. IntelliJ IDEA, developed by JetBrains, is a versatile IDE with intelligent
code assistance, robust refactoring tools, and seamless integration with languages like Java, Kotlin, and
Python. It has a variety of built-in tools for version control, debugging and testing.

Arend plugin supports the following functionality:

(a) Incremental type checking. Under normal circumstances the Arend plugin uses the so-called
“on-the-fly” (or smart) mode of type checking. In this mode, the type checker operates in a
background thread, automatically reprocessing each code modification made by the user.

(b) Arend Messages tool window. The Arend Messages tool window serves as the primary
interactive element in Arend, providing essential insight into proof goals, expected types, and error
notifications. While writing terms the user can insert hole expressions {?} for arbitrary subterms,
which would introduce goals shown in Arend Messages. This allows for a convenient way of writing
proof terms by gradually breaking down the original proof goal into several subgoals.

(c) Editor features. The Arend editor supports a variety of features that greatly simplify working
with Arend code such as: auto-completion of identifiers; quick fixes for Arend errors; intention
actions such as adding missing clauses in pattern matching; refactorings such as handling conse-
quences of changing signatures of definitions or moving definitions; navigation tools such as Go
to Declaration or Find Usages; quick documentation popups supporting LaTex; parameter hint
tooltip which can be invoked in application expressions.

(d) Debugger for metas.

The library arend-lib. The main Arend library arend-lib can be divided into three parts which are
developed constructively (without the excluded middle or the axiom of choice):

1. Constructive mathematics. This is the main part of the library. The mathematical landscape in
the constructive setting is richer than in the classical setting since classically equivalent definitions often
become inequivalent constructively.
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This part contains the following: schemes via locally ringed locales; PID domains and the proof that
they are 1-dimensional Smith domains; splitting fields of polynomials and algebraic closure for countable,
decidable fields; connection between zero-dimensional and integral extensions; matrices over commutative
rings, determinants, characteristic polynomials, Cayley-Hamilton theorem; linear algebra over Smith
domains; integral ring extensions; polynomials over one or several variables; Nakayama’s lemma;
derivative over topological rings; directed limits for sequences and functions; series and power series;
natural, integer, rational, real and complex numbers and various structures on them; categories, functors,
adjoint functors, Kan extensions, (co)limits; elementary topoi and Grothendieck topoi; topological
spaces, locales, uniform spaces, completion of spaces.

The main references are the books [22, 19] and the paper on constructive complete spaces by Isaev [13].

2. Synthetic homotopy theory. The following has been formalized synthetically that is under types as
homotopy types viewpoint: Eckmann-Hilton argument; K1(G); Hopf fibration; localization of universes
and modalities; Generalized Blakers-Massey theorem.

3. Computer science. Currently this part consists of formalization of high-order term rewriting systems.
The planned future formalizations include fragments of computational complexity theory.

Future directions. So far, developments in synthetic homotopy theory in HoTT have been limited. One
reason is that types in HoTT are necessarily∞-groupoids, a special kind of∞-categories where all morphisms
are invertible. This is because equality is symmetric. Attempts to define more general∞-categorical structures
in terms of ∞-groupoids in HoTT have led to the still-open question of definability of (semi-)simplicial types
in HoTT[16]. Recently, proposals for directed HoTT [8, 7], where types are ∞-categories, have emerged.
Future versions of Arend are expected to support a variant of directed HoTT.

The structure of this paper. Section 2 describes the type theory of Arend and compares it to MLTT
and “textbook” HoTT [28] in the contexts of set-theoretic formalization and synthetic homotopy theory.
Section 3 presents a few examples of Arend code highlighting its novelties – namely, the system of universes,
type classes / records, inductive types with conditions and arrays.

2 Underlying type theory of Arend

The type theory of Arend is an extension of the homotopy type theory with interval type (HoTT-I). It is a
simple modification of Martin-Lof type theory (MLTT) which allows for native support of homotopy type
theory and has certain important advantages over MLTT even for formalisations unrelated to homotopy
theory.

2.1 Homotopy type theory with interval type

1. Interval type I: a new primitive which serves as a basis for the definition of equality type x =A y.
Type I is defined as a data type with two constructors left : I, right : I and the elimination principle
given by the function coe:

Γ `
Γ ` I

Γ `
Γ ` left : I

Γ `
Γ ` right : I

Γ, x : I ` A Γ ` a : A[x := left] Γ ` i : I

Γ ` coe(λx.A, a, i) : A[x := i]

coe(λx.A, a, left) ≡ a, coe(λx.A, a, i) ≡ a if x /∈ FV(A)
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Functions from I to a type A can be interpreted as paths in A. In HoTT-I, the equality type is defined
as the type of paths Path(λx.A, a, a′), which are maps f from I to A with fixed endpoints f(left) ≡ a
and f(right) ≡ a′:

Γ, x : I ` A Γ ` a : A[x := left] Γ ` a′ : A[x := right]

Γ ` Path(λx.A, a, a′)

Γ, x : I ` a : A

Γ ` path(λx.a) : Path(λx.A, a[x := left], a[x := right])

Γ ` p : Path(λx.A, a, a′) Γ ` i : I

Γ ` p @a,a′ i : A[x := i]

path(λx.t) @a,a′ i ≡ t[x := i], path(λx.p @ x) ≡ p if x /∈ FV(p)

p @a,a′ left ≡ a, p @a,a′ right ≡ a′

The standard J-eliminator for equality types in MLTT can be derived from these rules.

2. Univalence axiom: the function iso witnessing the principle “isomorphic types are equal” which
implies the structure identity principle (see 2.3.3 below). Given types A, B, mutually inverse
functions f , g and proofs p, q of f ◦ g = id and g ◦ f = id, the function iso constructs a family of
types iso(A,B, f, g, p, q, i) parameterized by interval i : I, such that iso(A,B, f, g, p, q, left) ≡ A and
iso(A,B, f, g, p, q, right) ≡ B:

Γ ` A
Γ ` B

Γ, x : A ` b : B
Γ, y : B ` a : A

Γ, x : A ` p : a[y := b] = x

Γ, y : B ` q : b[x := a] = y Γ ` i : I

Γ ` iso(A,B, λx.b, λy.a, λx.p, λy.q, i)

iso(A,B, λx.b, λy.a, λx.p, λy.q, left) ≡ A, iso(A,B, λx.b, λy.a, λx.p, λy.q, right) ≡ B
coe(λi.iso(A,B, λx.b, λy.a, λx.p, λy.q, i), a0, right) ≡ b[x := a0] if i /∈ FV(A B b a p q)

2.2 Extensions of HoTT-I in Arend

The core type theory of Arend includes a number of extensions of HoTT-I:

1. Inductive types with conditions. Definitions of inductive types in the core type theory of Arend
extend the standard definitions with conditions on constructors. Conditions allow to glue different
constructors when evaluated at certain values of parameters. For example, for the type Int of integers
with two constructors pos (n : Nat) and neg (n : Nat) a condition might be pos 0 ≡ neg 0. In general a
condition on a constructor con (a1 : A1) . . . (an : An) is almost the same as a definition of a partial
function by pattern matching which specifies how con evaluates. The most interesting examples of
conditions involve pattern matching on the interval (such pattern matching is not allowed for functions):
it can be used to glue arbitrary constructors con1 and con2 by means of the constructor con= (i : I)
with conditions con= left ≡ con1 and con= right ≡ con2. This allows to define quotient types and higher
inductive types (see 2.3.2 and 2.4 below).

The mechanism of inductive types with conditions in Arend has been analised in the paper [31].
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2. Propositions and sets. Type theory of Arend contains the type Prop – an impredicative universe of
all propositions, and a predicative hierarchy of universes of sets Set 0 ⊆ Set 1 ⊆ . . . . Universes Prop
and Set n constitute a fragment of the type theory which represents a variant of set theory and provide
a framework for conventional set-theoretic formalization.

The following properties characterize the logic and the universe Prop:

(a) The operations ∀, ∧, →, ¬ as well as the constants True, False are defined as usual in propositions-
as-types logic, corresponding to

∏
, ×, →, · → 0 and the types 1, 0, respectively. Operations ∃,

∨ can be defined as inductive types or via
∑

, + as ∃(x : A)P (x) :=nonempty(
∑

(x:A) P (x)) and

P ∨Q := nonempty(P +Q), where nonempty(A) is an inductive type (see (2e) below).

(b) Prop is impredicative and the logic of Prop is by default constructive: the law of excluded
middle LEM := ∀(P : Prop)P ∨ ¬P and general axiom of choice do not hold. Propositions are sets:
Prop ⊆ Set 0 and Prop : Set 0.

(c) Propositions P : Prop satisfy propositional proof irrelevance PI(P ) :=∏
(p,q:P ) p = q. This is one of the main properties that distinguish propositions from other types:

a proposition conveys no more information than a truth value.

(d) Propositional extensionality holds for Prop: if P ↔ Q for P,Q : Prop then P = Q. This is a
consequence of proof irrelevance and the univalence axiom.

(e) The universe Prop defines the syntactic notion of proposition: propositions are types in Prop
and the main property of types in Prop is proof irrelevance. But there is also a more semantic
notion of an h-proposition, which is any type A satisfying proof irrelevance, namely such that
isProp(A) := PI(A) is provable.

In the type theory of Arend any definition of an inductive type P : Type, which is an h-proposition,
can be supplemented with a proof p : isProp(P ) in which case P gets placed in Prop and becomes a
proposition syntactically. This applies also to record types and there are analogous extensions for
function definitions which ensure, for example, that isProp(A) is in Prop. This mechanism allows
to define the predicate nonempty(A) : Prop3 as inductive type with constructors in (a : A) and
trunc (a b : nonempty(A)) (i : I) with conditions trunc a b left ≡ a, trunc a b right ≡ b and an obvious
proof λx.λy.path(truncx y) : isProp(nonempty(A)).

Another key mechanism: for an inductive type P in Prop and an h-proposition A functions P → A
can be defined by simplified elimination where constructors containing parameters of type I are
omitted. This implies PI(P ) for any P : Prop: with this elimination one can construct a function
nonempty(P )→ P which is inverse to the obvious function P → nonempty(P ) and prove that they
are mutually inverse.

As an alternative to the mechanism for placement of inductive types P : Type with p : isProp(P )
in Prop Arend supports a mechanism for marking inductive definitions as truncated definitions
in Prop and limiting definitions of functions P → A by elimination only to h-propositions A. For
example, propositions ∃(x : A)P (x) : Prop and P ∨Q : Prop can be defined directly as truncated
inductive types rather than via nonempty. We call h-prop elimination this kind of elimination
from truncated inductive types in Prop. In case A is not a proposition, eliminator includes a proof
p : isProp(A).

In the presence of univalence elimination from truncated definitions in Prop cannot be extended
to all types. Full, unrestricted elimination from propositions to arbitrary types would imply
the existence of a global choice operator gc : ΠA:Setnnonempty(A) → A, which is inconsistent
with the univalence axiom ([24], Corollary 17.5.3). Moreover propositional proof irrelevance for
P : Prop cannot be strengthened to the computational one p ≡ q, p, q ∈ P . Although it is probably
consistent, it causes some issues in a type theory with h-prop elimination.

3nonempty(A) is also called propositional truncation and denoted ‖A‖−1
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From the above it follows that the universe Prop in Arend can be seen as an extension of the
universe Prop in Coq, Lean or Agda with a more general form of elimination for inductive types.
In Coq, Lean or Agda elimination from Prop is confined to the universe Prop itself (and is called
small elimination). In Arend the elimination is more general: it is at least h-prop elimination (for
truncated definitions) and sometimes unrestricted elimination (for definitions P supplemented with
p : isProp(P )). This aligns with the HoTT approach to logic, which is based on h-propositions.

See Section 3 for examples in Arend language.

(f) As a consequence of h-prop elimination holds a weak form of the axiom of choice: the principle
of unique choice UC. The principle UC essentially says that if ∀(x : X)∃!(y : Y )
P (x, y), where ∃! means “exists and unique”, then ∃(f : X → Y )∀(x : X)P (x, f(x)). h-prop
elimination is a stronger form of UC, which, in particular, defines functions which compute at
constructors. This implies, for example, that every bijection has an inverse with computational
properties.

The axiom of choice AC obtained by dropping uniqueness in UC is not provable in Arend, but
can be consistently assumed.

(g) h-prop elimination and the univalence axiom imply that Prop is isomorphic to totalities of h-
propositions: Prop ∼=

∑
(A:Setn) isProp(A) for all n ∈ N. It follows from provability of isProp(A)→

nonempty(A) = A using h-prop elimination and the univalence axiom. Moreover, with LEM the
universe Prop is isomorphic to Bool.

To sum up, the logic of Arend provides a basis for either constructive or classical univalent formalization
of mathematics where:

(a) Univalence axiom and the structure identity principle hold.

(b) The principle of unique choice UC holds in the computational form of h-prop elimination for Prop.

(c) The axiom of choice AC and the law of excluded middle LEM are not accepted in arend-lib, but
can be consistently assumed in some formalizations.

Universes Set n are characterized by the following properties:

• For X : Set n and x, y : X the type x = y lies in Prop. In particular, sets satisfy uniqueness of
identity proofs UIP(X) :=

∏
(x,y :X) PI(x = y).

• Set n ⊂ Set (n+ 1), Set n : Set (n+ 1) and there is a hierarchy of universes Type n of all types
satisfying Set n ⊂ Type n.

• As in the case of propositions, there is a semantic notion of an h-set, which is any type A for which
UIP(A) is provable. And similarly to propositions, definitions with a proof of isSet(A) := UIP(A)
can be placed in Set, and the elimination for truncated inductive types in Set n is confined to
h-sets (h-set elimination). This implies Set n ∼=

∑
(A:Typen) isSet(A).

3. Homotopy levels and polymorphism. Sets in Arend are types A such that their equality type
x =A y is a proposition. This construction can be iterated by considering 1-types such that their
equality type is a set, 2-types such that their equality type is a 1-type and so on. This leads to the
notion of a homotopy level of a type: we say that propositions are of homotopy level −1 and a type
is of homotopy level k ∈ N if its equality type is of homotopy level k − 1. We say that a type is of
homotopy level ∞ if no such k exists.

In Arend universes Type (n, k) are also parameterized by the homotopy level k (apart from the usual
predicative level n). As in the case of Prop and Set n there is a universe placement mechanism for
definitions, k-type elimination and an equivalence between Type (n, k) and the type of all semantic
k-types: Type (n, k) ∼=

∑
(A:Type n) isOfHLevel(A, k).

This provides a basis for allowing definitions to be polymorphic on the homotopy level.
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4. Subtyping and dependent record types. For some pairs (A,B) of types in Arend holds A < B
(subsumptive subtyping), which means that the typing relation a : A implies the typing relation a : B.
Subtyping is involved in two mechanisms: in cumulativity of the hierarchy of universes and, more
significantly, in the system of dependent record types.

Cumulativity of the hierarchy of universes means that bigger universes contain types from smaller uni-
verses: Type (p, h) < Type (p′, h′) if and only if p ≤ p′ and h ≤ h′. In particular Prop < Set 0 < Set 1 < . . .

Dependent record types provide a basis for working with hierarchies of mathematical structures
by means of bundling data and creating new structures as extensions or specifications of other struc-
tures. Record types C{x1 : A1, x2 : A2, . . . , xn : An} (where Ai may depend on x1, . . . , xi−1) are
similar to sigma-types: their elements are also dependent tuples (a1 : A1, a2 : A2[a1/x1], . . . , an :
An[a1/x1, . . . , an−1/xn−1]). Variables x1, . . . , xn are called the fields of C. The difference from sigma-
types is that a new record type D can be formed as an extension of C in which case D becomes a
subtype of C. Record type D can extend C with new fields xn+1, . . . , xn+k or with manifest fields of
the form xi ⇒ ai, i ∈ {1, . . . , n}, which assign a specific value for fields of C. If D contains xi ⇒ ai
then its objects would be tuples where i-th component is computationally equal to ai.

Some of the properties of record types:

(a) Record type extensions model the concept of inheritance in programming languages. In Arend
multiple inheritance is allowed: a record type can be an extension and therefore a subtype of several
record types. Multiple inheritance together with manifest fields provide a flexible framework for
grouping data associated to mathematical objects using sharing, extensions and subtyping.

(b) Record extensions consisting of just manifest fields can be anonimous. This implies that records’
fields also behave like parameters: if C{x1 : A1, x2 : A2, . . . , xn : An} is a record, the application
C a1 . . . ak is the anonimous extension C{x1 ⇒ a1, . . . , xk ⇒ ak}.

(c) If D is an extension of C and x : A is a field of C then the type of the field x can be overriden in
D and changed to a subtype B: x : B, B < A.

For example, a record SetHom for morphisms in the category of sets would contain fields Dom,
Codom for domain and codomain which are sets. A record RingHom of morphisms in the category
of rings can be defined as an extension of SetHom with types of Dom, Codom changed to the type
of rings.

(d) Although propositions in Arend are not computationally proof irrelevant in general, a form of
computational proof irrelevance holds for propositions inside record types. Namely, some fields
whose type is a proposition can be declared properties in which case their value will be irrelevant
in comparing elements of records.

For example, a record Cat for categories would have data fields for objects, morphisms, identity
morphism and composition and property fields for associativity of composition and neutrality of
identity morphism. One consequence of this would be that if C : Cat then C is computationally
equal to (Cop)op.

5. Arrays. Arend has built-in type Array of arrays which subsumes the standard inductive type List (A :
Type) of lists of varying length, the standard indexed inductive type Vec (A : Type) (n : Nat) of lists of
fixed length n and the type of functions Fin len→ A, where Fin (sucn) : Set is the type corresponding to
the finite set {0, . . . , n}. The type Array is a special kind of record with the fields: A : Type for elements,
len : Nat for length and an indexing function at : Fin len→ A. Types List and Vec can be defined via
Array as anonymous extensions: List (A : Type) := ArrayA, Vec (A : Type) (n : Nat) := ArrayAn. The
type ArrayAn is obviously isomorphic to the type of functions Finn → A, but it satisfies additional
computational equalities which is the central motivation for introducing ArrayAn:

Γ ` A
Γ ` n : Nat

Γ ` f : Fin (n+ 2)→ A

Γ ` g : Fin (n+ 2)→ A
Γ ` f n ≡ g n
Γ, x : Fin (n+ 1) ` f x ≡ g x

Γ ` f ≡ g

9



There is also dependent version DArray with A : Fin len→ Type and at :
∏

(i:Fin len)A i.

We now explain what these modifications bring to MLTT and how it affects formalisation in general, not
necessarily in the context of homotopy theory. We then outline some nice properties of the type theory of
Arend specific for formalisations in homotopy theory.

2.3 Properties of the theory of Arend relevant for set-theoretic formalization

2.3.1 Function extensionality

Function extensionality principle says that if two functions are pointwise equal then they are equal:

Γ ` A
Γ ` B

Γ ` f :
∏
x:A

B x

Γ ` g :
∏
x:A

B x Γ, x : A ` p : f x = g x

Γ ` FunExt(f, g, λx.p) : f = g

This principle cannot be proven in MLTT and has to be added as an axiom. It is known to be provable
from univalence axiom in HoTT, but the proof is not completely straightforward ([28], Section 4.9). Definition
of equality type in HoTT-I allows to define FunExt very easily:

FunExt(f, g, λx.p) :≡ path(λi.λx.p@i)

Moreover, this definition of FunExt is well behaved computationally. As a map between pointwise equalities
to equalities between functions FunExt admits an obvious inverse λp.λx.path(λi.p@i x) such that composition
on both sides is computationally the identity.

Derivation of FunExt in cubical type theories is also elementary (for example, in Cubical Agda [29]). In
Lean FunExt is derived using built-in axioms for quotient types and propositional extensionality.

2.3.2 Quotient types

Given a type A and a relation R : A→ A→ Prop4 the quotient type A/R is the type obtained from A by
identifying all a, b : A such that R(a, b) holds. More formally A/R can be characterised as a type satisfying
the following properties:

1. There is a function c : A→ A/R.

2. (Universal property) For any type B any function f : A→ B respecting R (that is such that f(a) = f(b)
whenever R(a, b)) factorizes uniquely through c: there exists a unique h : A/R→ B such that f = h ◦ c.
The map h corresponds to an eliminator for A/R.

In terms of category theory A/R is the coequalizer of two projections
∑

(a,b :A)R(a, b) ⇒ A. The concept

of quotient type is well known to be hard to deal with in MLTT due to intensionality of equality [18, 12, 1].
Although quotient types can be defined in MLTT in some cases (say, for rationals) in general they are not
definable in MLTT (say, for Cauchy reals)[18]. We briefly outline some of the proposed ways to introduce
arbitrary quotient types:

1. Setoids. Instead of working with types one can work with types coupled with an equivalence relation
[12, 1, 2]. If we think of types as sets, this corresponds to replacing sets with setoids. Quotient type
would correspond to quotient setoid, which is defined simply by taking union of two equivalence relations.
Coq, for example, has a well developed setoid infrastructure that helps to adopt this approach. However,
this approach is rather impractical because of all the complications of working with a custom term
rewriting system for equivalence relations (as opposed to built-in one for the equality type).

4Here Prop stands for the totality of propositions, which can be the universe of propositions like in Arend, Coq, Lean or just
sort Type in pure MLTT
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2. Axioms for existence of quotient types. Quotient types can be introduced purely axiomatically by
simply assuming the statement phrasing that there exists a type A/R satisfying the universal property.
The disadvantage of this approach compared to the previous one is that it is not constructive since
assuming any kind of axioms destroys certain meta properties of MLTT such as canonicity. Moreover
there would be no computational rules for A/R (unless built-in in type theory) which is inconvenient in
practice. Nevertheless this approach is often used in Coq, Agda and Lean. In Lean the computational
rules for A/R are built-in.

3. Quotients of h-sets in the logic of h-propositions in HoTT. Quotients can be defined for h-
sets using subuniverse hProp of h-propositions and univalence (or extensionality for functions and
h-propositions): if R is hProp-valued equivalence relation on an h-set A : hSet, then A/R can be defined
as the type of all P : A→ hProp that define an equivalence class of R in A. This definition rises the
universe level which can be dealt with by means of resizing rules ([28], Section 6.10).

4. Higher inductive types. An appealing perspective on dealing with constructs like quotient types
systematically was brought by HoTT in the form of a mechanism to introduce equalities in definitions of
inductive types. Definitions of higher inductive types (HITs) in HoTT apart from ordinary constructors
contain constructors for equalities called path constructors, and the modified elimination principle
ensures the universal property (see Section 2.4 below and Chapter 6 in [28]).

First, this allows to define the operation ‖A‖0 of set-truncation for types A : Type which produces h-set
by trivializing the structure of the identity type on A and enforces UIP on ‖A‖0. The h-set ‖A‖0 can be
defined as the higher inductive type with ordinary constructor inSet (x : A) : ‖A‖0 and path constructor
trunc (x, y : ‖A‖0) (p, q : x = y) : p = q.

Second, for an h-set A and hProp-valued relation R the quotient h-set A/R can be defined as A/R :=
‖Q(A,R)‖0 where Q(A,R) is the higher inductive type with ordinary constructor inQ (x : A) : Q(A,R)
and path constructor equiv (x, y : A) (p : Rxy) : inQ x = inQ y

5. The presence of computational rules
analogous to those of ordinary inductive types makes it computationally better behaved solution than
those based on axioms. On the negative side: some of the constructors in the inductive definition of
A/R are required to be elements of a different type (the equality type) and quotients A/R are still not
fully constructive. These issues have been solved in cubical type theories, but at the cost of making the
theory two-level and significantly more complicated.

The type theory of Arend allows for particularly convenient definitions following the last two approaches.
Definition (3) can be stated in Arend with the universe Prop in place of hProp and Set in place of hSet.

Since Prop in Arend is impredicative, resizing rules are unnecessary in this case. Meanwhile due to absence of
elimination outside of Prop for propositions in Coq, Lean and Agda, definition (3) requires h-prop elimination
for Prop there to be stated in computationless axiomatic form (which results in computationless quotient
type) or involves subuniverses hProp and resizing rules.

Arend also improves on the approach (4). It turns HITs into ordinary inductive types with conditions.
Instead of the path constructor equiv (x, y : A) (p : Rxy) : inx = in y for A/R : Set we can define
an ordinary constructor equiv (x, y : A) (p : Rxy) (i : I) : A/R with conditions equiv x y p left ≡ inx and
equiv x y p right ≡ in y. Moreover instead of using set-truncation HIT Arend allows to simply declare A/R to be
a truncated inductive type in Set with elimination restricted to h-sets. Unfortunately Arend’s implementation
of the approach (4) to the definition of a quotient type has the same disadvantages as the axiomatic approach
(2) as is implemented in Lean. However it is more general and allows sometimes to simplify things by defining
quotients not via A/R but directly as a inductive type with conditions as, for example, in the case of type of
integers (see the beginning of Section 2.2) or the type of univariate polynomials in arend-lib (see Section 4.1.3).

5The untruncated type Q(A,R) is not an h-set in general
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2.3.3 Isomorphic types are equal

One important property of MLTT is that it cannot distinguish between isomorphic types 6. Namely, if A
and B are isomorphic types and P X is a property of types then P A and the negation of P B cannot be
simultaneously proven in MLTT. This can be shown by constructing a homotopical model of MLTT where
existence of isomorphism between A and B implies existence of elements in A = B [14].

In fact, a stronger statement holds for MLTT: all properties of types are stable under isomorphism.
Namely, for any predicate P X on types which is defined also for X outside of universes7 there is a function
[[P ]](A,B : Type) : (A ∼= B)→ (P A ∼= P B). This is called external univalence - a metatheoretic property of
theories capturing preservation of isomorphisms. It is metatheoretic the construction of [[P ]] is dependent on
the structure of P and is not uniform. External univalence can be shown using homotopical inverse diagram
construction [15] or univalent parametricity translation [27]. It has been proven in the general setting of
second-order generalized algebraic theories in [4] which implies that it holds for any type theory with identity
types and any standard choice of type formers like

∑
-,
∏

-types, universes, inductive types and so on.
It is thus natural to avoid the routine of proving stability for each particular P X and pass to an extension

or a modification of MLTT where univalence holds internally or more precisely where A ∼= B → A = B holds.
The simplest minimal such extension of MLTT would be just MLTT with ua : A ∼= B → A = B added as

an axiom. This is essentially the way univalence is introduced to HoTT-I: an isomorphism between types can
be converted to equality between types by built-in function iso. A small advantage of HoTT-I over MLTT
with the axiom is the presence of built-in computational rules for iso that make the use of univalence a bit
more convenient.

Example: types of unary and binary natural numbers. A simple classical example of isomorphic
types, where a mechanism for transferring proofs of properties from one to the other would be desirable, is
given by different representations of natural numbers: unary and binary. This example is rather relevant for
the formal verification: binary numbers are computationally efficient and are used in formal descriptions of
algorithms whereas unary numbers are easier to reason about.

Unary natural numbers are defined as the standard inductive type Nat with constructors 0 : Nat and
suc : Nat → Nat. This definition is convenient for proving properties of natural numbers via standard
induction but is computationally inefficient.

The type NatBin of natural numbers represented as binary strings without trailing zeros can be defined
as an inductive type with constructors 0Bin : NatBin and pos : Bin+ → NatBin were Bin+ is an inductive type
with constructors 1Bin : Bin+ and digit : Fin 2 → Bin+ → Bin+. For example, the binary number 1010 is
represented as the term pos (digit 0 (digit 1(digit 0 1Bin))) : NatBin. In contrast to the unary definition Nat
above, this definition of natural numbers is computationally efficient, but proving even basic properties of
+Bin and ∗Bin defined in computationally efficient way becomes rather involved.

Problems such as enabling Nat to be used for proving properties of NatBin have been central to a long line
of research on mechanisms for transferring proofs of theorems between isomorphic types [21, 5, 32]. At the
heart of many approaches lies the concept of parametricity [23] which is closely tied to developments on free
theorems about observational equivalences [30], data refinements for free [5] and proofs for free [3].

Recent work [27] demonstrates how certain limitations of parametricity-based approaches can be addressed
by combining parametricity and univalence. Parametricity enables a white-box translation of definitions
and proofs of theorems between equivalent types by leveraging the internal structure of the terms being
translated and their types. In contrast, univalence provides a universally applicable black-box translation
through transport along equalities, such as ua(f) : A = B for f : A ∼= B. Each approach, however, has its
limitations when used in isolation.

For instance, univalent transport of an efficient function NatBin → NatBin results in a function Nat→ Nat
that retains its efficiency. However, the convenient induction principle for Nat becomes inapplicable to it.
On the other hand, parametric transport can utilize correspondences between different implementations of
functions, such as + and +Bin. Nevertheless, the applicability of this approach in dependently-typed settings

6We prefer to call “isomorphism” here what is usually called “equivalence” in HoTT since we prefer to turn to pre-HoTT
terminology while discussing applications to set-theoretic formalization

7In particular, P X can be arbitrary closed predicate

12



is constrained due to the critical role of type-level computations. In particular, a dependent type A(n) defined
using eliminator for Nat satisfies some computational rules which would be lost for its analogue for NatBin
and that would create problems when translating functions

∏
n:NatA(n) defined using eliminator for Nat.

As suggested in [27], these problems can be addressed by devising combined approach of univalent
parametricity, which intertwines white-box and black-box translations in a complementary and effective
manner.

Isomorphic structures. MLTT likewise cannot distinguish between various isomorphic structures on
top of types such as groups, rings, topological spaces and so on. In other words MLTT cannot distinguish
between isomorphic objects in various categories admitting a natural forgetful functor to the category of
sets. And typically the function iso can be used to derive equality of isomorphic objects and freely transfer
properties of the one to properties of the other. This is known as the structure identity principle in
Univalent Foundations ([28], Section 9.8).

Example: definition of schemes. We now give a concrete example from Arend standard library
arend-lib, where the function iso helps to avoid proving stability of a property under isomorphisms. The
example is concerned with the definition of a scheme from the part of arend-lib devoted to algebraic geometry.
In this particular example the need to prove stability of the property of “being locally ringed space” under
isomorphisms is caused by the impossibility to define in MLTT the general factor ring R/I construction in
such a way that R/∅ = R and not just R/∅ ∼= R.

Let us first briefly recall some definitions involved in the definition of a scheme:

• Locale (≈ Topological space). Formalization of algebraic geometry in arend-lib does not deal with
topological spaces and replaces them with closely related locales, certain kind of posets that can be
thought of as posets of open sets.

• Ringed locale (L,OL) is a locale L together with a sheaf of rings OL on L, that is with a functor
(presheaf) OL : Lop → Ring satisfying certain properties. The sheaf OL is called structure sheaf and
can be thought of as a functor mapping an open set to the ring of regular functions on this open set.

• Locally ringed locale (L,OL) is a ringed locale such that, if we think of locale as a topological space,
for every point x ∈ L the colimit stalkx(OL) := colimx∈UOL(U) over all open sets U of L containing x
is a local ring.

• Spectrum of a ring. For a commutative ring R its spectrum SpecR is a topological space with prime
ideals of R as points and arbitrary ideals as closed sets. It is a locally ringed locale with structure sheaf
given by localisation OR(R\I) := I−1R.

We have now everything that is needed for the definition of a scheme. An affine scheme (X,OX) is a
ringed locale of the form (SpecR,OR) for some commutative ring R. A scheme is a ringed locale (X,OX)
which can be covered by affine schemes, that is there exists a system of open sets {Ui} such that X = ∪Ui

and for each i the ringed locale (Ui,OX �Ui
) is affine scheme.

It can be proven that all schemes are locally ringed locales: for affine schemes it follows from the fact that
spectra are locally ringed and for arbitrary schemes from the fact that a locale covered by locally ringed locales
is locally ringed. But the translation of the property of being locally ringed from spectra to other schemes
depend on whether we require (X,OX) = (SpecR,OR) or (X,OX) ∼= (SpecR,OR) in the definition of affine
schemes and whether (Ui,OX �Ui

) = (Yi,OYi
) or (Ui,OX �Ui

) ∼= (Yi,OYi
) for affine (Yi,OYi

) in the definition
of schemes. With iso we can assume equalities everywhere and avoid any extra complications whatsoever.
Without iso one has to choose between the following scenarios each of which bring some complications to
formalisation:

1. If isomorphism is used in any of the places above, then one has to prove that the predicate “to be
locally ringed” is stable under isomorphism.

13



2. If in both places are equalities then affine schemes are not schemes since (X,OX �X) is only isomorphic
to (X,OX) and not equal . Therefore properties proved for schemes would not automatically be proven
for affine schemes.

3. One can modify definition of a scheme and say that either (X,OX) is affine scheme or can be covered
by affine schemes. But that means that case distinction would be necessary every time when proving
some property of schemes.

There are no obstacles in the second scenario above in the presence of iso, of course, since it can be used
to generate equality (X,OX �X) = (X,OX).

See Section 4.1.3 for more details on how it is manifested in arend-lib.

2.3.4 Logic and set theory

Since Prop is impredicative and due to univalence, the category of sets in Arend formed by universes Setn
is an elementary topos. If Prop is extended with LEM and AC then the category of sets becomes a model
of Lawvere’s Elementary Theory of the Category of Sets ([28], Section 10.1). It is possible to interpret the
constructive set theory CZF in Setn and ZFC in case Prop is extended with LEM and AC ([28], Section 10.1,
[9]).

2.3.5 Hierarchies of structures

Formalization of mathematics crucially relies on mechanisms for grouping data and properties of mathematical
structures. In languages based on variants of MLTT this is often done by means of dependent record types
supplemented with typeclasses and instance inference mechanism. Dependent record types and typeclasses in
such languages are closely related to module systems and typeclasses in functional programming languages
[17, 11, 10]. Here we focus on record types since the mechanism of typeclasses does not require any extensions
of the core type theory, we discuss it in more detail in Section 3.2.

Record types can be used, for example, to define the type of monoids as follows:

Monoid {E : Set, ide : E, ∗ : E → E → E,

ide-left (x : E) : ide ∗ x = x, ide-right (x : E) : x ∗ ide = x,

∗ -assoc (x y z : E) : (x ∗ y) ∗ z = x ∗ (y ∗ z)}

Elements X : Monoid are essentially tuples containing as data the carrier set X.E, monoid identity X.ide and
binary operation X.∗ together with proofs that this data defines a monoid structure on X.E.

The challenges that arise when designing a dependently typed language with record types include the
support of multiple inheritance, subtyping, partial implementations and sharing. For example, a field is both
a commutative local ring and a GCD domain so it is natural to define the type Field of fields as an extension
of LocalCRing and GCDDomain which requires multiple inheritance. Apart from making Field inherit the
data and properties of LocalCRing and GCDDomain it involves making Field a subtype of the two. Finally, in
the constructive setting definition of a domain contains apartness predicate x#0 as part of data8 which in
Field can be defined as invertibility9 x#0⇒ isInvertible(x) and this requires partial implementations. The
tightness of the apartness relation then exactly says that non-invertible elements equal to 0 and is left as
unimplemented field. We discuss this example in more detail in Section 3.2.

In Arend these challenges are addressed both at the level of the core type theory and at a higher level.
As described in Section 2 the type theory of Arend has extensions for subsumptive subtyping A < B and
manifest fields x⇒ a for record types where the latter provides a mechanism for partial implementations
and sharing. From theoretical point of view such extensions of MLTT were studied, for example, in [6].
There are also implementations: manifest fields are supported, for example, by the proof assistant Matita

8With LEM x#0 must be the same as x 6= 0
9A constructive (Heyting) field is by definition a commutative local ring such that non-invertible elements equal to 0
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[25]. These extensions are extremely useful for working with hierarchies of so-called bundled or semi-bundled
definitions where all or almost all operational data of a mathematical structure and its defining predicates
are placed in fields of a record (and the rest of data is in parameters). For example, the definition of
Monoid above is fully bundled, its less bundled variants would be records with parameters Monoid′ (E : Set),
Monoid′′ (E : Set) (ide : E), Is Monoid (E : Set) (ide : E) (op : E → E → E). Definitions like Is Monoid are
typically classified as unbundled since all its data components are parameters. Unbundled definitions allow to
reduce partial implementations to usual applications, though at the price of losing key benefits of record
types such as being a type of tuples with named projections. Still with the mechanism of typeclasses and
instance inference unbundled approach can be made viable as suggested, for example, in [26].

Without manifest fields possibilities for defining record extensions become much more limited even in
unbundled case. For example, manifest fields allow to define record Ring as an extension of Semiring. Some of
defining properties of Semiring, namely x ∗ 0 = 0 and 0 ∗ x = 0, become derivable in Ring and therefore these
fields should be implemented (see also Section 3.2). Without manifest fields, in bundled or unbundled case,
typically one has to define more of the small, atomic records and combine them to define various composite
records, the option of constructing composite records as specializations of other composite records becomes
unavailable.

Arend language has numerous high level constructs on top of record types which we mainly discuss in
Section 3.2: typeclasses, coercive subtyping, anonymous extensions and so on. Parameters of records is also a
high level construct in Arend: the mechanism of manifest fields allows to translate parameters to fields in the
core type theory.

The development of major theorem provers from MLTT family such as Lean, Coq and Agda has been
avoiding subsumptive subtyping and manifest fields in the core theory thus making record types the same
as sigma types. Subsumptive subtyping there is replaced with coercive subtyping A <c B in which case
typechecker inserts an application c a : B of some function c : A → B whenever a term a : A is used in
a context where a term of type B is expected. There are also ways to deal with manifest fields without
extending the core type theory as studied, for example, in [20].

2.3.6 Arrays

The primary application of the type Array is that it significantly simplifies recursion and induction for nested
inductive types involving inductive types ListA and VecAn. To illustrate this consider inductive type of
terms Term (F : Set) (a : F → Nat) with the constructor fun (f : F ) (v : Vec (TermF a) (a f)) – constructor
for the function application term f v1 . . . va(f), where f is a functional symbol of arity a(f) and v1, . . ., va(f)
are terms.

In this case the nesting occurs when the type Term, which is being defined, is used as a parameter
of type Vec in its constructor func. By Vec (A : Type) (n : Nat) here we mean the standard type of
lists of length n represented as indexed inductive type generated by the constructors nil : VecA 0 and
cons (a : A) (v : VecAn) : VecA (sucn).

The problem here is that it is unclear what should be the eliminator ETerm for Term. Some obvious choices
would not enable proofs and constructions by induction on subterms since in the induction step there is no
way to refer to i-th element of v10. The type Array allows to work with v as if it were a function and simply
form applications v i. But Array is not just the type of functions: its computational behavior is analogous to
the one for Vec (see Section 2.2). For example, if x1 ≡ x2 and y1 ≡ y2 then f x1 y1 ≡ f x2 y2.

2.4 Type theory of Arend under types as homotopy types viewpoint

1. Higher inductive types. Higher inductive types (HITs) provide a mechanism for inductive definitions
of types with non-trivial homotopical structure on them. HITs are akin to CW complexes which are
defined by specifying cells of various dimensions and the way they glued. The original approach to
defining HITs in HoTT was as follows: a HIT D contains ordinary constructors, which are generating

10At induction step one would like to use values G(vi) to construct the value G(f v1 . . . va(f)) while defining G
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points of D, and path constructors, which are generating paths of D and have types of the form l =D r,
s =(l=Dr) t and so on ([28], Chapter 6).

For example, the circle S1 can be defined as HIT with the following constructors:

(a) Point constructor base : S1 for the base point.

(b) Path constructor loop : base =S1 base for the loop.

A definition of the torus T2 would involve cells of dimension 2, for example:

(a) Point constructor point : T2.

(b) Path constructors loop1, loop2 : point =T2 point for two loops.

(c) Path constructor face : loop1 · loop2 =(point=T2point)
loop2 · loop1 defining a cell of dimension 2, where

loop1 · loop2 is concatenation of paths.

The recursion principle for HITs is a straightforward generalisation of the one for ordinary inductive
types. For example, in order to define a function from S1 to a type A one needs to specify a point a : A
and a loop l : a =A a in A and the recursor gives a function reca,lS1 : S1 → A such that reca,lS1 (base) ≡ a
and pmap reca,lS1 loop = l, where pmap is an obvious function mapping a path between arguments to a
path between images of a function . Dependent case, that is the induction principle, is also not hard to
state, but it is a bit more subtle ([28], Section 6.2).

With this approach to HITs it is far from obvious how to formulate a rigorous schema of general
inductive definitions of this kind.

The interval type in Arend allows to use ordinary constructors with conditions instead of path
constructors. For example, T2 can be defined in Arend as an inductive type with conditions with
the following constructors:

(a) point : T2.

(b) line1 (i : I) : T2, line2 (i : I) : T2 with conditions line1(2) left ≡ point and line1(2) right ≡ point.

(c) face (i : I) (j : I) : T2 with conditions:

• face left j ≡ line2 j.

• face right j ≡ line2 j.

• face i left ≡ line1 i.

• face i right ≡ line1 i.

The recursion and induction principles are just the standard ones with the requirement that conditions
must be preserved by the function being defined. The general schema of inductive definitions of this
kind can be easily formulated: it is the standard schema plus specification of valid forms of conditions,
which is rather simple. Definitions of HITs in Arend are pretty similar to definitions of HITs in cubical
type theories, however there are some differences ([31], Section 2.4.4).

Elimination principles for HITs, as formulated in [28], can be derived in Arend, so all HoTT book style
proofs can be carried out in Arend. But often inductive types with conditions allow for much simpler
proofs. To illustrate this consider a proof of T2 ∼= S1 × S1 in Arend. The definition of mutually inverse
functions f : T2 → S1 × S1 and g : S1 × S1 → T2 is completely straightforward:

(a) Using elimination for T2 the function f is defined by its values on constructors: f(point) :≡
(base, base), f(line1 i) :≡ (loop i, base), f(line2 j) :≡ (base, loop j), f(face i j) :≡ (loop i, loop j).

(b) Using double elimination for S1 the inverse g is defined by its values on constructors: g(base, base) :≡
point, g(loop i, base) :≡ line1 i, g(base, loop j) :≡ line2 j, g(loop i, loop j) :≡ face i j.

The identities g(f x) = x and f(g y) = y are proven by reflexivity for each of the constructors and thus
can be proven trivially using elimination. In contrast, the HoTT book style proof of T2 ∼= S1 × S1 is
rather involved ([28], Exercise 6.3).
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3 Arend language

In this section we present the most essential language constructs of Arend.

3.1 Levels and universe polymorphism

Since there is no way to assume consistently the existence of the set Set of all sets any construction that aims
at producing a set out of the totality of all sets has to be applied to a universe of small sets Set 0 producing
a set in a universe of large sets Set 1. Then such constructions can typically be iterated and produce a
set in the universe Set i+ 1 of level i+ 1 out of the universe Set i of level i. And typically this routine is
straightforward and can be automated.

Arend language allows to use Set and Type in practice as if they were types of types and delegate
the routine of dealing with levels to the typechecker. Typechecker replaces Set and Type with hierarchies
of universes, converts definitions accordingly and checks if definitions are not contradictory because of a
circularity in universe hierarchy. This is achieved by the following mechanisms:

1. Universe polymorphism. Definitions are made polymorphic on universe levels: there are implicit
level parameters associated with each definition.

2. Level inference. In each occurrence of Set or Type typechecker infers level according to some natural
procedure.

For example, the following code typechecks in Arend:

\func id {A : \Set} (a : A) => a

\func id-test-set : \Set => id \Set

\func id-test-id : \Set => id (id \Set)

Arend typechecker unfolds definitions of id, id-test-set and id-test-id as functions each with its own
implicit level parameter \lp. The unfolded definition of id takes as a parameter a type A : \Set \lp in a
universe of level \lp. In the body of the function id-test-set the function id is applied to the universe
\Set \lp, the type of id-test-set is thus \Set (\suc \lp). In the body of id-test-id inner id is of type
\Set (\suc \lp) -> \Set (\suc \lp), the outer id thus belongs to the universe of level \suc \suc \lp.

Levels of universes can also be specified explicitly in Arend using level expressions involving level
variables, 0 and operations \suc l and \max l l’. For example, the code above can equivalently be written
as follows:

\func id {A : \Set \lp} (a : A) => a

\func id-test-set : \Set (\suc \lp) => id (\suc \lp) (\Set \lp)

\func id-test-id : \Set (\suc \suc \lp) => id (\suc \suc \lp) (id (\suc \lp) (\Set \lp))

Polymorphic definitions can have several predicative level parameters in which case they must be linearly
ordered. For example, it is quite useful to have separate and comparable level parameters for objects and
morphisms in the definition of a category:

\class Cat \plevels obj >= hom

Universe management in Arend is rather similar to the one in Lean and late versions of Coq. It is quite
different in Agda: Agda has considerably less automation, one has to be much more explicit about levels.
Also, unlike level expressions in Agda where they are terms of type Level, level expressions in Arend are not
typed.

3.1.1 Homotopy levels

The universe \Prop and the hierarchy \Set n are contained in the double hierarchy \Type n k parameterized
additionally by the homotopy level k: \Prop is \Type n -1 and \Set n is \Type n 0. Definitions in Arend
can be made polymorphic on the homotopy level as well: each definition by default has implicit homotopy
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level parameter \lh apart from \lp. Most of the constructs for predicative levels described above are likewise
applicable to homotopy levels: for example, the language of level expressions is the same for both predicative
and homotopy levels.

3.1.2 Definitions in Prop, Setn and Type (n, k)

By default a definition is inferred to be of some homotopy level according to a certain rules and is placed
in the corresponding universe. However one often needs to use a definition which is not inferred by the
typechecker to be in \Prop, \Set or \Type n k to define a proposition, a set or a k-type in the corresponding
universe. There are two ways to do this in Arend:

1. Use level. Assume D is a definition of a record, class or inductive type is provably a k-type which
means that the predicate isOfHLevel D k is provable. In that case D can be turned into a definition
in \Type n k by means of extending it with a proof of isOfHLevel D k which is done in Arend via
\use \level construct. In particular, extending D with a proof of isProp D or isSet D would place
D in \Prop or \Set respectively. For example, the predicate nonempty A can be defined in \Prop as
follows:

\data nonempty (A : \Type) : \Prop

| in A

| trunc (a a’ : nonempty A) : a = a’ -- just another syntax for the constructor

-- trunc (a a’ : nonempty A) (i : I) with

-- conditions trunc a a’ left => a

-- trunc a a’ right => a’

\where {

\use \level levelProp {A : \Type} (a a’ : nonempty A) : a = a’ => path (nonempty a a’)

}

As mentioned in Section 2 elimination to h-propositions from inductive types in \Prop does not involve
constructors with parameters of the type I. This means that such constructors can be omitted in
definitions of functions by pattern matching in this case. Eliminator corresponding to the recursion
principle for nonempty can be defined using pattern matching as follows:

\lemma rec {A B : \Type} (p : isProp B) (t : nonempty A) (f : A -> B) : B \elim t

| in a => f a

This simplified pattern matching allows to derive proof irrelevance for types in \Prop using nonempty:

\lemma prop-pi {A : \Prop} {a a’ : A} : a = a’

=> \case trunc (in a) (in a’) __ \with { -- \case f __ is unfolded to

| in x => x -- \lam i => \case f i

}

2. Truncated inductive types. Any definition of an inductive type can be placed in a universe of any
given homotopy level by marking the definition as truncated. This marking is done by means of the
keyword \truncated in front of a definition. It places the definition in a universe \Type n k, but
at the cost of restricting elimination to types A satisfying isOfHLevel A k. In other words, pattern
matching cannot be used to define functions from truncated inductive types in \Type n k to a type A

unless there is a proof of isOfHLevel A k. For example, the quotient set can be defined as follows:

\truncated \data Quotient {A : \Type} (R : A -> A -> \Type) : \Set

| in~ A

| ~-equiv (x y : A) (R x y) : in~ x = in~ y -- again, this is unfolded to

-- ~-equiv (x y : A) (R x y) (i : I) with conditions

The recursion principle for Quotient would be:
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\sfunc rec {A B : \Type} (R : A -> A -> \Type) (p : isSet B)

(f : A -> B) (f-R : \Pi (x y : A) (R x y) -> f x = f y) (x : Quotient R) : B

\elim x

| in~ a => f a

| ~-equiv a a’ r i => f-R a a’ r @ i

3.2 Typeclasses and records

Here we highlight some aspects of the system of typeclasses and records in Arend. This system is built upon
the system of records in the core type theory discussed in Section 2.

1. Partial implementations. As described in Section 2 the mechanism of manifest fields allows to
partially implement parent records or classes11 inside a child record or class. For example, as mentioned
in Section 2.3.5 the type of rings can be defined in Arend as an extension of the type of semirings using
partial implementation:

\class Semiring \extends AbMonoid, Monoid {

| ldistr {x y z : E} : x * (y + z) = x * y + x * z

| rdistr {x y z : E} : (x + y) * z = x * z + y * z

| zro_*-left {x : E} : zro * x = zro

| zro_*-right {x : E} : x * zro = zro

}

\class Ring \extends Semiring, AbGroup {

| zro_*-left {x} => {?} -- proof of 0 * x = 0 using invertibility wrt ’+’

| zro_*-right {x} => {?} -- proof of x * 0 = 0 using invertibility wrt ’+’

}

Here Semiring extends AbMonoid and Monoid which are additive commutative and multiplicative
monoidal structures on the same carrier E12. Since AbGroup extends AbMonoid with the group structure,
the type Ring is defined as a semiring where + operation is strengthened to a group operation.

Another example: tight apartness relation x # y. It is constructively better behaved variant of inequality
Not (x = y) since it satisfies the tightness condition Not (x # y) -> x = y (whereas Not (x = y)

constructively does not). Such relations are useful, for example, for defining domains constructively
as rings satisfying x # 0 -> y # 0 -> (x * y) # 0. It is natural to define the base class Set# of
sets with apartness relation and various types of structures with apartness as its extensions. However,
for example, in case of groups specifying the full binary relation x # y is redundant since it can be
expressed in terms of x # 0. This can be done using partial implementations:

-- groups with ’+’ operation (not necessarily commutative) and apartness relation ’#’

\class AddGroupWith# \extends AddGroup, Set_#

| \fix 8 #0 : E -> \Prop

| #0-zro : Not (zro ‘#0)

| #0-negative {x : E} : x ‘#0 -> negative x ‘#0

| #0-+ {x y : E} : (x + y) ‘#0 -> x ‘#0 || y ‘#0

| #0-tight {x : E} : Not (x ‘#0) -> x = zro

| # x y => (x - y) ‘#0

-- we omit implementations of properties of x # y

Finally, another example from Section 2.3.5 - the type of Heyting fields which is by definition a
commutative local ring where all noninvertible elements are equal to zero. This example illustrates

11The difference between classes and records is not relevant at this point. We discuss specifics of classes in more detail below
12In arend-lib there are two hierarchies for groups and monoids: one for + and one for ∗.
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the usefulness of partial implementations for defining structures which extend several branches of
hierarchies in such a way that some data and properties of one branch is implemented in terms of data
and properties of other branches.

\class Field \extends LocalCRing, GCDDomain

| #0 x => Inv x

| #0-+ => LocalRing.sumInv=>eitherInv -- property of local rings: if x + y is invertible

-- then either x or y is invertible.

-- we omit implementations of isGCDDomain and other properties of apartness ’#’

-- the tightness ’#0-tight’ remains unimplemented and represents one of defining

-- properties of the Heyting field: all noninvertible elements are equal to zero

2. Anonymous extensions. Extensions of records and classes can be defined on the fly: if C is a record
containing a field f : A then the term C { f => a } refers to a record extension obtained from C by
specifying f to a term a : A.

For example, one can use the class of all semirings to define the type of all semiring structures on
natural numbers:

\func SemiringsOnNat : \Set => Semiring { E => Nat } -- or simply ’=> Semiring Nat’

Here SemiringsOnNat is a subtype of Semiring.

3. Properties. As mentioned in Section 2 a form of computational proof irrelevance holds in Arend for
records and classes. Arend makes an explicit distinction between property fields and data fields. The
result of comparison of two objects depends only on comparison of data fields, proofs of properties are
ignored. By default a field is a property if its type is a proposition which in particular is the case if the
type is equality between elements of a set.

For example, proofs of properties ldistr, rdistr, zro_*-left and zro_*-right of the class Semiring
are ignored when comparing two semirings.

4. Static and dynamic blocks. All fields of a record or class D as well as definitions of inductive types
and functions declared in the inner block of D have an implicit parameter \this : D which represents
the instance 13. Fields and definitions in this block are thus dynamic analogously to dynamic class
methods in Java or C++. Although dynamic definitions can be replaced with external static definitions
with an extra parameter of type D, dynamic definitions of basic operations and properties of D are more
concise and neat. For example, part of dynamic block of Monoid might look as follows:

\class Monoid \extends Pointed {

| \infixl 7 * : E -> E -> E

| ide-left {x : E} : ide * x = x

| ide-right {x : E} : x * ide = x

| *-assoc {x y z : E} : (x * y) * z = x * (y * z)

\func pow (a : E) (n : Nat) : E \elim n

| 0 => ide

| suc n => pow a n * a

\lemma pow_+ {a : E} {n m : Nat} : pow a (n + m) = pow a n * pow a m \elim m

| 0 => inv ide-right

| suc m => pmap (‘* a) pow_+ *> *-assoc

}

13Expressions a.f for taking value of a field or invoking a definition f of an instance a are converted to applications f {a}
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Just like any other definition in Arend classes and records have \where block for associated static
definitions. These static blocks are quite useful, for example, for defining some standard structures on
top of a mathematical structure like having an apartness relation or decidable equality. For example,
for rings one use the static block as follows:

\class Ring \extends Semiring, AbGroup {

-- . . .
} \where {

-- | A ring with a tight apartness relation.

\class With# \extends Ring, AddGroup.With# {

-- . . .
}

-- | A ring with decidable equality.

\class Dec \extends AddGroup.Dec, With# {

-- . . .
}

}

5. Type classes. The concept of a type class originates in Haskell programming language. The mechanism
of type classes enables ad-hoc polymorphism, a form of polymorphism similar to operator overloading
in object-oriented programming: type classes specify bundles of operations on types which can be
implemented differently for different types.

In Arend type classes are definitions which start with the keyword \class and are similar to records.
The key difference is the instance inference mechanism for type classes: some of objects of a type class
can be declared as instances which would enable the typechecker to infer a suitable instances whenever
necessary. For example, a semiring structure on natural numbers can be defined as an instance of class
Semiring:

\instance NatSemiring : Semiring Nat

| zro => 0

| + => +

| * => *

| ide => 1

-- we omit proofs of semiring properties for Nat

At a place where multiplication of natural numbers is used typechecker can infer the instance
NatSemiring and make applicable at this place everything that is applicable to semirings, for ex-
ample, a simplification tactic erasing subexpressions multiplied by 0.

\func example (n : Nat) : n * 0 + 1 = 1

=> simplify -- the tactic ’simplify’ infers NatSemiring and uses proofs

-- of properties of +, * to derive the equality

With respect to the behavior of instances and instance inference Arend is very similar to other theorem
provers like Coq, Lean or Agda.

3.3 Arrays

The type Array is defined in Prelude.ard as a record:

\record DArray {len : Nat} (A : Fin len -> \Type)

(\coerce at : \Pi (j : Fin len) -> A j)

\func Array (A : \Type) => DArray { | A _ => A }
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The are also functions nil and a :: l which can be used in pattern matching as if DArray were an
inductive type. Coercion at allows to use arrays as if they were functions. A function G, as mentioned in
Section 2.3.6, can be defined by recursion on terms as follows:

\data Term (F : \Set) (a : F -> Nat) | fun (f : F) (v : Array (Term F a) (a f))

\func G {F : \Set} {a : F -> Nat} (t : Term F a) \elim t

| fun f v => fun f (\lam i => G (v i))

4 The library arend-lib

In this section we highlight some parts of arend-lib.

4.1 Constructive mathematics

4.1.1 Category theory

4.1.2 Topology

Locales. The concept of a locale captures the system of open subsets O(X) of a topological space X without
reference to its underlying set of points. Locales align better with constructive mathematics, as many natural
systems of “open subsets” lack enough points without the axiom of choice. For instance, classically, an affine
scheme is defined as the topological space SpecR, whose points are the prime ideals of a ring R, equipped
with a canonical sheaf of rings. However, in a constructive setting, prime ideals may not exist. In contrast,
the locale of “open subsets” corresponding to radical ideals of R always preserves the meaningful structure.
Therefore, it is more natural in constructive mathematics to define an affine scheme as this locale of radical
ideals, together with its sheaf of rings. There are also reasons to use locales instead of topological spaces in
the classical setting, we will discuss this in the context of algebraic geometry in Section 4.1.3.

Formally, O(X) is defined as a frame, which is a poset with all small joins ∨ and all finite meets ∧
satisfying the infinite distributive law: x∧ (∨i yi) ≤ ∨i x∧yi. In particular, a frame is a complete, distributive
lattice. A frame homomorphism is a homomorphism of posets preserving finite meets and small joins. This
defines the category Frm of frames. The category Locale of locales is the dual of Frm: Locale := Frmop. In
particular, a locale is given by the same data as a frame.

In arend-lib the type of locales is defined as the class Locale (E : \Set) extending classes CompleteLattice,
Bounded.DistributiveLattice and SiteWithBasis (sites are pairs (C, J) where C is a category with a
covering J for objects). The class Locale forms a diamond in lattice hierarchy: the class CompleteLattice
is a descendant of Bounded.Lattice extending it with operation Join {J : \Set} : (J -> E) -> E for
arbitrary joins ∨j∈J xj and the class Bounded.DistributiveLattice extends Bounded.Lattice with finite
distributivity ldistr>= {x y z : E} : x ∧ (y ∨ z) <= (x ∧ y) ∨ (x ∧ z).

The categories of frames and locales are defined as follows:

\record FrameHom \extends SetHom {

\override Dom : Locale

\override Cod : Locale

-- Properties expressing that ’fun’, the field of SetHom, is a homomorphism of frames

| fun-top : fun top = top

| fun-meet {x y : Dom} : fun (x ∧ y) = fun x ∧ fun y

| fun-Join {J : \Set} {f : J -> Dom} : fun (Join f) = Join (\lam j => fun (f j))

-- . . .
}

\func FrameCat : Cat Locale \cowith

| Hom => FrameHom

| id L => \new FrameHom {
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| fun x => x

| fun-top => idp -- proof by reflexivity

| fun-meet => idp

| fun-Join => idp

}

| o {L M K : Locale} (g : FrameHom M K) (f : FrameHom L M) : FrameHom L K => \new FrameHom {

| fun x => g (f x) -- f and g are coerced to functions

| fun-top => pmap g fun-top *> fun-top

-- *> stands for composition of paths

-- ’pmap’ maps path between args to path between values of ’g’

| fun-meet {x} {y} => pmap g fun-meet *> fun-meet

| fun-Join {J} {h} => pmap g fun-Join *> fun-Join

}

-- Proofs that this defines a category

-- . . .

\func FrameBicat : BicompleteCat \cowith

| Cat => FrameCat

| limit G => \new Limit {

| apex => limit-obj G

-- . . .
}

| pullback {X} {Y} {Z} f g => \new Pullback {

| apex => pullback-obj f g

-- . . .
}

| colimit G => reflectiveSubPrecatColimit FrameUnitalReflectiveSubcat G

(FrameUPresCocompleteCat.colimit (Comp FrameUnitalReflectiveSubcat G))

\where {

\func limit-obj {J : SmallPrecat} (G : Functor J FrameCat) : Locale \cowith

| E => \Sigma (P : \Pi (j : J) -> G j) (\Pi {j j’ : J} (h : Hom j j’) -> G.Func h (P j) = P j’)

| <= (P,_) (Q,_) => \Pi (j : J) -> P j <= Q j

-- . . .

\func pullback-obj {L M K : Locale} (f : FrameHom L K) (g : FrameHom M K) : Locale \cowith

| E => \Sigma (x : L) (y : M) (f x = g y)

| <= P Q => \Sigma (P.1 <= Q.1) (P.2 <= Q.2)

-- . . .
}

-- Declaring ’LocaleCat’ an \instance (as opposed to \func in case of ’FrameCat’)

-- enables instance inference mechanism to infer ’LocaleCat’ instance for locales

\instance LocaleCat : BicompleteCat \cowith

| Cat => Cat.op {FrameBicat}

| limit (G : Functor) => FrameBicat.colimit G.op

| colimit (G : Functor) => FrameBicat.limit G.op

| terminal {

| apex => discrete (\Sigma) -- Locale of subobjects of the unit type

-- . . .
}

4.1.3 Algebra

Algebraic geometry. The part of library arend-lib devoted to algebraic geometry contains basics of the
theory of schemes. The constructive theory of schemes developed in arend-lib is based on locales, which are
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better suited for constructive algebraic geometry than topological spaces as explained in Section 4.1.2.
Schemes in arend-lib are defined in terms of locally ringed locales as follows:

1. A ringed locale is a locale L together with a ring-valued sheaf OL on it:

\record RingedLocale (\coerce L : Locale) (R : VSheaf CRingCat L)

-- Here ’VSheaf D C’ is the type of D-valued sheaves on a site C (i.e. on a category

-- with a covering for objects). Note that ’Locale’ is a subtype of ’Site’.

2. Standardly, locally ringed spaces are defined as ringed spaces (X,OX) such that the stalk OX,x at every
point x ∈ X is a local ring. This definition is not suitable for locales since it refers to points and this
does not work constructively as explained in Section 4.1.2. Nevertheless, a locally ringed locale can be
defined by using an alternative formulation of the locality condition which is classically equivalent to
the standard one:

\record LocallyRingedLocale \extends RingedLocale

| isNonTrivial (a : L) : 0 = {R.F a} 1 -> a <= bottom

| isLocallyRinged (a : L) (x : R.F a) : a <= SJoin (\lam b => \Sigma (p : b <= a)

(EitherInv \this p x))

-- Here \func SJoin (U : E -> \Prop) => Join (\lam (t : Total U) => t.1)

\where {

\func EitherInv (L : RingedLocale) {a b : L} (p : b <= a) (x : R.F a)

=> Inv (R.F.Func p x) || Inv (R.F.Func p x + 1)

}

3. A scheme is a locally ringed locale which is locally isomorphic (by univalence this is the same as equal)
to an affine locally ringed locale (which classically is the spectrum SpecR of a ring R):

\record Scheme \extends LocallyRingedLocale

| isScheme : L.top <= SJoin (\lam U => ∃ (R’ : CRing) (VSheaf.restrict U R = {RingedLocale}

affineRingedLocale R’))

| isNonTrivial a p => -- . . .
| isLocallyRinged a x => -- . . .

Affine locally ringed locales are constructed using presentations (RingedFramePres, LocallyRingedFramePres).
It is easier to construct sheaves on presented frames:

\func Spec (R : CRing) : Locale

=> PresentedFrame (SpecPres R)

\func affineRingedLocale (R : CRing) => locallyRingedLocaleFromPres (affineRingedPres R)

The definition of affineScheme uses univalence:

\func affineScheme (R : CRing) : Scheme \cowith

| RingedLocale => affineRingedLocale R

| isScheme {x} _ => -- proof using univalence

PID domains. As we mentioned earlier (Section 3.2), domains are defined constructively as rings with
apartness relation x # y satisfying x # 0 -> y # 0 -> (x * y) # 0. According to the standard classical
definition a domain R is a Principal Ideal Domain (PID) if every ideal I ⊆ R is principal, that is there exist
a ∈ R such that I is generated by a: I = (a). Constructively, this definition is too strong since existence of
generators a for ideals I even for the most basic classical examples can only be proven using AC or LEM. For
example, for every predicate P : Z → Prop the ideal generated by {0} ∪ {x ∈ Z |P (x)} is principal if and
only if P is decidable which means that

∏
x:Z P (x) ∨ ¬P (x) is provable. Since not every predicate on Z is

decidable constructively, Z is not PID according to the classical definition.
A constructively more well-behaved property is the requirement that every finitely generated ideal be

principal. This is equivalent to the Bezout condition, which is defined in arend-lib as follows:
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\func IsBezout => \Pi (a b : E) -> ∃ (s t : E) (LDiv (s * a + t * b) a) (LDiv (s * a + t * b) b)

\class BezoutRing \extends CRing, GCDMonoid {

| isBezout : IsBezout

| isGCD a b => -- proof of TruncP (GCD a b)

| gcd-ldistr c {a} {b} {z} (g : GCD a b z) => -- proof of TruncP (GCD (c * a) (c * b) (c * z))

}

were LDiv x y is the type of left divisors and GCD is the type of greatest common divisors:

\record DivBase {M : Monoid} (\coerce val : M) (elem inv : M)

\record LDiv \extends DivBase

| inv-right : val * inv = elem

\record GCD {M : CMonoid}

(val1 val2 : M) (\coerce gcd : M)

(gcd|val1 : LDiv gcd val1)

(gcd|val2 : LDiv gcd val2)

(gcd-univ : \Pi (g : M) -> LDiv g val1 -> LDiv g val2 -> LDiv g gcd)

Now, if we assume LEM, then the classical definition of PID can be equivalently reformulated as follows:
PID is a domain satisfying Bezout condition and such that all ideals are finitely generated. The latter
condition is one of equivalent definitions of Noetherian property assuming LEM. Constructively, however, this
condition is too strong. Instead, we say that a ring R is Noetherian if for every sequence I1 ⊆ I2 ⊆ . . . of
finitely generated ideals of R there is k ∈ N such that Ik = Ik+1.

\class NoetherianCRing \extends CRing

| isNoetherian (I : Nat -> Ideal \this) : (\Pi (n : Nat) -> Ideal.IsFinitelyGenerated {I n}) ->

Ideal.ChainCondition I

-- function accompanying the class ’Ideal’

\func ChainCondition {R : CRing} (I : Nat -> Ideal R) =>

(\Pi (n : Nat) {a : R} -> I n a -> I (suc n) a) -> ∃ (n : Nat) ∀ {a} (I (suc n) a -> I n a)

In arend-lib PIDs are defined as domains R satisfying Bezout condition, Noetherian property and such
that equality x =R y is a decidable predicate. For Bezout rings Noetherian property admits an equivalent
formulation which is more convenient to work with. To state it, consider equivalence relation x ∼ y :=
x | y ∧ y |x on R and consider the quotient monoid R∼. Then every sequence {ai} ⊂ R∼ satisfying ai+1 | ai
necessarily has ak = ak+1 for some k ∈ N if and only if R satisfies the Noetherian condition.

The combination of the Bezout condition and the Noetherian property places PIDs in an important class
of domains known as Smith domains. The distinguishing property of Smith domains is existence of the
Smith normal form for matrices over them. Namely, for every m× n, n ≥ m matrix A over a Smith domain
R there exist invertible matrices S, T over R such that S · A · T = (diag(a1, . . . , ak, 0

m−k) |0m×(n−m)) is
m×m diagonal matrix followed by m× (n−m) zero matrix and ai | ai+1. In other words, if we say A ∼ B
for matrices if there exist invertible S, T such that B = S ·A · T , then for every A there exist a matrix in
the normal form D such that A ∼ D. Smith domains can be equivalently defined as domains satisfying the
Kaplansky condition.

\type IsKaplansky (R : CRing) => \Pi (a b c : R) -> IsCoprimeArray (a,b,c) -> ∃ (t s : R)

(IsCoprime (t * a) (t * b + s * c))

\class SmithRing \extends StrictBezoutRing

| isKaplansky : IsKaplansky \this

\class SmithDomain \extends BezoutDomain.Dec, SmithRing

The Smith normal form theorem is proven as part of the equivalence:
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\lemma Smith-char {R : CRing} : TFAE (

-- The four conditions below are equivalent

\Sigma R.IsStrictBezout (IsKaplansky R),

\Sigma R.IsStrictBezout (\Pi (A : Matrix R 2 2) -> A 1 0 = 0 -> IsCoprimeArray (A 0 0, A 0 1,

A 1 1) -> ∃ (B : Matrix R 2 2) (IsDiagonal B) (A M~ B)),

-- here M~ is equivalence as in the Smith normal form

\Pi {n m : Nat} -> n <= m -> m <= 2 -> \Pi (A : Matrix R n m) -> ∃ (B : Matrix R n m)

(IsDiagonal B) (A M~ B),

\Pi {n m : Nat} (A : Matrix R n m) -> ∃ (B : Matrix R n m) (IsSmith B) (A M~ B)

)

-- Dynamic lemma (using \this parameter) in SmithRing class

\lemma toSmith {n m : Nat} (A : Matrix E n m) : ∃ (B : Matrix E n m) (IsSmith B) (A M~ B)

=> Smith-char 0 3 (isStrictBezout,isKaplansky) A

Since PIDs are Smith domains, in arend-lib they are defined as extension:

\class PID \extends SmithDomain, NoetherianCRing {

| divChain : CMonoid.DivChain {DivQuotientMonoid nonZeroMonoid}

| isNoetherian I Ifg => Ideal.fromMonoidChainCondition (IntegralDomain.Dec.fromNonZeroDivChain

divChain) I \lam n => bezout_finitelyGenerated_principal.1 isBezout (Ifg n) -- f.g. ideals

-- are principal in Bezout rings

| isKaplansky => adequate_kaplansky \lam a/=0 => adequate’_adequate (domain_adequate’ divChain

a/=0)

}

The proof of Kaplansky condition goes via the proof of adequate condition for PIDs first.
Among the properties of PIDs proven in arend-lib, for example, is that PIDs are 1-dimensional:

\lemma is1Dim : Dim<= 1

=> bezout_1Dim←>adequate’.2 \lam a/=0 => domain_adequate’ divChain a/=0

-- Dynamic type (using \this parameter) in CRing class

\type Dim<= (k : Nat) => \Pi (x : Array E (suc k)) ->

∃ (a : Array E (suc k)) (m : Array Nat (suc k)) (fold x a m = 0)

\where

\func fold {k : Nat} (xs as : Array E k) (ms : Array Nat k) : E \elim k, xs, as, ms

| 0, nil, nil, nil => 1

| suc k, x :: xs, a :: as, m :: ms => pow x m * (fold xs as ms - x * a)

Polynomials of one or several variables. Polynomials of one variable over any pointed type (a type
with 0) have two equivalent representations in arend-lib: as an inductive type with conditions Poly and as
a quotient set QPoly. Both are essentially arrays of coefficients quotioned by cutting trailing zeros, but
sometimes it is more convenient to work with Poly instead of QPoly and vice versa.

\data Poly (R : AddPointed)

| pzero

| padd (Poly R) R

| peq : padd pzero 0 = pzero

\func QPoly (R : AddPointed) => Quotient {Array R} (__ = __ ++ 0 :: nil)

Multivariate polynomials are defined as a monoid algebra:

\func MPoly (J : \Set) (R : CRing) => MonoidAlgebra (PermSetMonoid J) R

\instance PermSetMonoid (A : \Set) : CMonoid (PermSet A)
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\type PermSet (A : \Set) => Quotient {Array A} EPerm

-- here the relation EPerm l l’ holds iff l’ can be obtained by permuting elements in l

Matrices over commutative rings. The library arend-lib defines matrices over any type R as two-
dimensional arrays and then formalizes operations on matrices and their properties for a variety of structures
on R. In case of commutative rings arend-lib has definitions of determinant, characteristic polynomial and
proofs of a number of their properties including the proof of Cayley-Hamilton theorem.

\func determinant {R : CRing} {n : Nat} (M : Matrix R n n)

=> R.FinSum \lam (e : Sym n) => sign e * R.BigProd (\lam j => M (e j) j)

\func charPoly {R : CRing} {n : Nat} (M : Matrix R n n) : Poly R

=> determinant $ padd 1 0 *c matrix-map (padd 0) 1 - matrix-map (padd 0) M

-- det (x * I - M)

-- ’matrix-map’ maps in this case a matrix over ’R’ to a matrix over ’Poly R’

\lemma cayley-hamilton {R : CRing} {n : Nat} (A : Matrix R n n)

: polyMapEval (CAlgebra.coefHom {MatrixAlgebra R n}) (charPoly A) A = 0

-- ’polyMapEval’ converts a polynomial over R to polynomial over ’MatrixAlgebra R n’

-- and then evaluates it at the matrix A

=> -- . . .

Among the properties of determinant formalized in arend-lib is the cofactor expansion and the existence
of adjugate matrices.

\func adjugate {R : CRing} {n : Nat} (M : Matrix R n n) : Matrix R n n \elim n

| 0 => M

| suc n => mkMatrix \lam i j => Monoid.pow -1 (j + i) * determinant (minor M j i)

\lemma adjugate-left {R : CRing} {n : Nat} {M : Matrix R n n} : adjugate M * M = determinant M *c 1

=> -- . . .

\lemma adjugate-right {R : CRing} {n : Nat} {M : Matrix R n n}

: M * adjugate M = determinant M *c 1

=> -- . . .

As a corollary we have that M is invertible if and only if det(M) is invertible.

\lemma determinant-inv {R : CRing} {n : Nat} {M : Matrix R n n} : Inv M ←> Inv (determinant M)

Another corollary is Nakayama’s lemma, which says the following. Let R be a commutative ring, I ⊆ R an
ideal and M a finitely generated module over R. If I ·M = M then there exist r ∈ R such that r ≡ 1(mod I)
such that r ·M = 0.

\lemma nakayama {R : CRing} {M : LModule R} {I : Ideal R} (fg : M.IsFinitelyGenerated)

(c : topSubLModule M <= I *m topSubLModule M)

: ∃ (e : R) (I (1 - e)) ∀ (m : M) (e *c m = 0)

Linear algebra over Smith domains. Here we sketch some elements of linear algebra over Smith
domains formalized in arend-lib.

1. Definition of the rank of a matrix over a Smith domain:

\func rank {R : SmithDomain} {n m : Nat} (A : Matrix R n m) : Nat => -- . . .

2. Let R be a Smith domain. For any finite-dimensional free modules U , V over R and every linear
f : U → V the image Im f and the kernel Ker f modules are finite-dimensional free.
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\class FinModule \extends LModule

| isFinModule : ∃ (l : Array E) (IsBasis l)

\instance image-fin {R : SmithDomain} {U V : FinModule R} (f : LinearMap U V) : FinModule

| LModule => ImageLModule f

| isFinModule => \case U.isFinModule, V.isFinModule \with {

| inP (lu,bu), inP (lv,bv) => TruncP.map (basis f bu bv) \lam s => (s.1,s.2)

}

\where {

\protected \lemma basis {U V : LModule R} (f : LinearMap U V) {lu’ : Array U}

(bu’ : U.IsBasis lu’) {lv’ : Array V} (bv’ : V.IsBasis lv’)

: ∃ (l : Array (Image f)) (IsBasis {ImageLModule f} l)

(l.len = rank (LinearMap.toMatrix lu’ bv’ f))

=> -- . . .
}

\instance kernel-fin {R : SmithDomain} {U V : FinModule R} (f : LinearMap U V) : FinModule

| LModule => KerLModule f

| isFinModule => -- . . .

3. Let R be a Smith domain and U a finite-dimensional free module over R. Linear dependence for a set
of vectors u1, . . . , un in U is decidable.

\func dependency-dec {R : SmithDomain} {U : FinModule R} (l : Array U)

: Or (U.IsDependent l) (U.IsIndependent l)

Algebraic closure of countable, discrete fields. Constructively there are fewer algebraically closed
fields and algebraically closed extensions are harder to construct. For example, the field C is not algebraically
closed constructively (the Fundamental Theorem of Algebra fails).

The library arend-lib defines intergral extensions of rings, splitting fields for polynomials over discrete
fields and algebraic closure for countable, discrete fields.

\func isIntegral (f : RingHom) (x : f.Cod) : \Prop

=> ∃ (p : Poly f.Dom) (isMonic p) (polyEval (polyMap f p) x = 0)

A variant of the following fact is proven in arend-lib: if S → R is an integral extension of rings and
S is 0-dimensional then R is 0-dimensional. The 0-dimensionality Dim<= 0 condition can equivalently be
reformulated as follows:

-- Dynamic type (using \this parameter) in Ring class

\type IsZeroDimensional => \Pi (a : E) -> ∃ (b : E) (n : Nat) (pow a n = pow a (suc n) * b)

The library arend-lib has a proof of a strengthening of this fact with S a discrete field. A discrete field is
a commutative ring such that every element is either zero or invertible (see Section 3.2 for a definition of a
field).

\class DiscreteField \extends Field, EuclideanDomain {

| finv : E -> E

| finv_zro : finv 0 = 0

| finv-right {x : E} (x/=0 : x /= 0) : x * finv x = 1

\field eitherZeroOrInv (x : E) : (x = 0) || Inv x

}

\func integralExt-zeroDim {K : DiscreteField} {R : CRing} {f : RingHom K R} (fi : isIntegralExt f)

: R.IsZeroDimensional

=> -- . . .
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The definition of a splitting field for a polynomial:

\type IsSplittingField {k K : DiscreteField} (p : Poly k) (f : RingHom k K)

=> ∃ (l : Array K) (c : K) (RingHom.isAlgebraGenerated f l)

(polyMap f p = c PolyRing.*c Monoid.BigProd (map (\lam a => padd 1 (negative a)) l))

A ring K is algebraically closed if every monic polynomial over K of non-zero degree has a root.

\type IsAlgebraicallyClosed (K : Ring)

=> \Pi {p : Poly K} -> ∃ (n : Nat) (n /= 0) (degree<= p n) (polyCoef p n = 1) -> ∃ (a : K)

(polyEval p a = 0)

Every countable discrete field has an algebraic closure:

\sfunc countableAlgebraicClosure {k : DiscreteField} (c : Countable k)

: \Sigma (K : DiscreteField) (f : RingHom k K) (IsAlgebraicClosure f)

=> -- . . .

4.2 Other parts of the library

4.2.1 Synthetic homotopy theory

Eckmann-Hilton argument. The algebraic Eckmann-Hilton argument shows that if a type X has two
unital binary operations ◦ and # such that (a#b) ◦ (c#d) = (a ◦ c)#(b ◦ d) then ◦ and # coincide and are
commutative and associative.

\class Algebraic-Eckmann-Hilton (X : \Type) {

| \infix 7 o : X -> X -> X

| \infix 7 # : X -> X -> X

| id_o : X

| id_o-left {x : X} : id_o o x = x

| id_o-right {x : X} : x o id_o = x

| id_# : X

| id_#-left {x : X} : id_# # x = x

| id_#-right {x : X} : x # id_# = x

| rel {a b c d : X} : (a # b) o (c # d) = (a o c) # (b o d)

\func units-coincide : id_o = id_# => -- . . .
\func binop_rels_1 {a b : X} : a o b = b # a => -- . . .
\func binop_rels_2 {a b : X} : b # a = b o a => -- . . .
\func comm {a b : X} : a o b = b o a => binop_rels_1 *> binop_rels_2

\func binops_coincide {a b : X} : a o b = a # b => comm *> binop_rels_1 {\this} {b} {a}

\func comm-# {a b : X} : a # b = b # a => rewrite (inv binops_coincide, binop_rels_1) idp

\func rel-o {a b c d : X} : (a o b) o (c o d) = (a o c) o (b o d) =>

rewrite (binops_coincide {\this} {a} {b}, binops_coincide {\this} {c} {d}, rel,

inv binops_coincide) idp

\func assoc {a b c : X} : (a o b) o c = a o (b o c) => rewrite (inv $ id_o-left {\this} {c},

rel-o, id_o-left, id_o-right) idp

}

A corollary of this: the 2-dimensional loop space Ω2(X) is a commutative monoid with respect to loop
composition.

\class Omega^2-Commutative (X : HPointed) {

\func Commutative (alp bet : Omega^ 2 X) : alp *> bet = bet *> alp => -- . . .
}
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Eilenberg-MacLane space K1(G). The space K1(G) is defined to be a space such that its only
nontrivial homotopy group is the fundamental group π1 and it is isomorphic to G.

\truncated \data K1 (G : Group) : \1-Type

| base

| loop G : base = base

| relation (g g’ : G) (i : I) (j : I) \elim i, j {

| left, j => base

| right, j => loop g’ j

| i, left => loop g i

| i, right => loop (g * g’) i

}

\where {

\func Loop_K1 {G : Group} : (base {G} = base) = G => -- . . .
}

4.2.2 Computer science
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