\import Equiv
\import Equiv.Univalence
\import HLevel
\import Homotopy.Fibration
\import Logic
\import Paths
\record Seq (A : Nat -> \Type) (f : \Pi {n : Nat} -> A n -> A (suc n))
\data SeqColimit (s : Seq)
| inSC {n : Nat} (s.A n)
| quotSC {n : Nat} (x : s.A n) : inSC x = inSC (s.f x)
\where {
-- | The total space of a fibration over a sequential colimit is equivalent to a sequential colimit of fibers of this fibration.
\func flattening {s : Seq} (P : SeqColimit s -> \Type) : total = (\Sigma (w : SeqColimit s) (P w))
=> Equiv-to-= totalSeqColimitLeft *> path TotalSeqColimit *> Equiv-to-= totalSeqColimitRight
\where {
\func total => SeqColimit seq
\where
\func seq : Seq \cowith
| A n => \Sigma (x : s.A n) (P (inSC x))
| f p => (s.f p.1, transport P (path (quotSC p.1)) p.2)
\data TotalSeqColimit (j : I)
| tinSC {n : Nat} (x : s.A n) (P (inSC x))
| tquotSC {n : Nat} (x : s.A n) (i : I) (w : P (quotSC x (I.squeeze i j))) \elim i {
| left => tinSC x w
| right => tinSC (s.f x) (coe2 (\lam i => P (quotSC x i)) j w right)
}
\func totalSeqColimitLeft : QEquiv {total} {TotalSeqColimit left} \cowith
| f => LR
| ret => RL
| ret_f t => \case \elim t \with {
| inSC (x,p) => idp
| quotSC (x,p) i => idp
}
| f_sec t => \case \elim t \with {
| tinSC x p => idp
| tquotSC x i p => idp
}
\where {
\func LR (t : total) : TotalSeqColimit left \elim t
| inSC (x,p) => tinSC x p
| quotSC (x,p) i => tquotSC x i p
\func RL (t : TotalSeqColimit left) : total \elim t
| tinSC x p => inSC (x,p)
| tquotSC x i p => quotSC (x,p) i
}
\func totalSeqColimitRight : QEquiv {TotalSeqColimit right} {\Sigma (w : SeqColimit s) (P w)} \cowith
| f => LR
| ret => RL
| ret_f t => \case \elim t \with {
| tinSC _ _ => idp
| tquotSC _ _ _ => idp
}
| f_sec t => \case \elim t \with {
| (inSC x, p) => idp
| (quotSC x i, p) => idp
}
\where {
\func LR (t : TotalSeqColimit right) : \Sigma (w : SeqColimit s) (P w) \elim t
| tinSC x p => (inSC x, p)
| tquotSC x i p => (quotSC x i, p)
\func RL (p : \Sigma (w : SeqColimit s) (P w)) : TotalSeqColimit right \elim p
| (inSC x, p) => tinSC x p
| (quotSC x i, p) => tquotSC x i p
}
}
}
-- | The colimit of a sequence of surjections is a surjection.
\lemma seqColimit-surj (s : Seq) (p : \Pi (n : Nat) -> Surjection (s.f {n})) : Surjection (inSC {s} {0}) \cowith
| isSurjMap (inSC x) => helper x
\where {
\lemma helper {n : Nat} (x : s.A n) : TruncP (Fib (inSC {s} {0}) (inSC x)) \elim n
| 0 => inP (x,idp)
| suc n =>
\let | (inP r) => isSurjMap {p n} x
| (inP t) => helper r.1
\in inP (t.1, t.2 *> path (quotSC r.1) *> pmap inSC r.2)
}
-- | The colimit of a sequence of constant maps is contractible.
\lemma constantMaps (s : Seq) (p : \Pi (n : Nat) -> \Sigma (x : s.A (suc n)) (\Pi (a : s.A n) -> s.f a = x)) : Contr (SeqColimit s)
=> Contr.make (inSC (p 0).1) (\lam x => inv (contraction x))
\where {
\func points (n : Nat) : inSC (p n).1 = inSC (p 0).1 \elim n
| 0 => idp
| suc n => inv (path (quotSC (p n).1) *> pmap inSC ((p (suc n)).2 (p n).1)) *> points n
\func contraction (x : SeqColimit s) : x = inSC (p 0).1 \elim x
| inSC {n} x => path (quotSC x) *> pmap inSC ((p n).2 x) *> points n
| quotSC {n} x =>
\let | t => path (quotSC x) *> pmap inSC ((p n).2 x) *> points n
| h a => path (quotSC a) *> pmap inSC ((p (suc n)).2 a)
| q =>
coe (quotSC x __ = inSC (p 0).1) t right ==< coe_path (path (quotSC x)) t idp >==
inv (path (quotSC x)) *> t ==< inv (*>-assoc _ _ _) >==
(inv (path (quotSC x)) *> path (quotSC x)) *> pmap inSC ((p n).2 x) *> points n ==< pmap (`*> pmap inSC ((p n).2 x) *> points n) (inv_*> (path (quotSC x))) >==
idp *> pmap inSC ((p n).2 x) *> points n ==< idp_*> _ >==
pmap inSC ((p n).2 x) *> points n ==< pmap (`*> points n) (inv (Jl (\lam y q => h (s.f x) *> inv (h y) = pmap inSC q) (*>_inv _) ((p n).2 x))) >==
(h (s.f x) *> inv (h (p n).1)) *> points n ==< *>-assoc _ _ _ >==
h (s.f x) *> points (suc n) ==< *>-assoc _ _ _ >==
path (quotSC (s.f x)) *> pmap inSC ((p (suc n)).2 (s.f x)) *> points (suc n) `qed
\in pathOver q
}