\import Arith.Nat \import Data.Array \import Data.Or \import Function \import Function.Meta ($) \import Logic \import Logic.Meta \import Meta \import Paths \import Relation.Equivalence \import Set \import Set.Fin \import Set.Fin.Pigeonhole \class KFinSet \extends BoundedPigeonholeSet { | finSurj : ∃ (f : Fin finCard -> E) (isSurj f) | boundedPigeonhole => \case finSurj \with { | inP (f,s) => boundedPigeonhole {pigeonhole-surj (\new BoundedPigeonholeSet (Fin finCard) finCard (pigeonhole-fin __ id<suc)) f s} } \lemma search (A : E -> \Prop) (d : \Pi (e : E) -> Dec (A e)) : Dec (∃ (e : E) (A e)) => \case finSurj \with { | inP (f,fs) => \case FinSet.searchFin (\lam j => A (f j)) (\lam j => d (f j)) \with { | inl a => yes (inP (f a.1, a.2)) | inr q => no \lam (inP t) => \case fs t.1 \with { | inP (j,p) => q j (transportInv A p t.2) } } } \lemma search_yes_reduce {A : E -> \Prop} (d : \Pi (e : E) -> Dec (A e)) (e : ∃ (e : E) (A e)) : search A d = yes e => prop-pi \lemma search_no_reduce {A : E -> \Prop} (d : \Pi (e : E) -> Dec (A e)) (q : Not (∃ (e : E) (A e))) : search A d = no q => prop-pi \lemma dec : Dec (TruncP E) => cases (finCard,finSurj) \with { | 0, inP (f,fs) => no \lam (inP x) => \case fs x \with { | inP ((),_) } | suc n, inP (f,fs) => yes $ inP (f 0) } } \where { \lemma fromArray {A : \Set} (l : Array A) (p : \Pi (a : A) -> ∃ (i : Fin l.len) (l i = a)) : KFinSet A l.len \cowith | finSurj => inP (l,p) \lemma toArray (A : KFinSet) : ∃ (l : Array A) ∀ a ∃ (i : Fin l.len) (l i = a) => TruncP.map A.finSurj \lam (f,p) => (f,p) \lemma KFin+Dec=>Fin {A : \Set} (k : KFinSet A) {d : DecSet A} : FinSet A => \case toArray k \with { | inP (l,q) => \let l' => nub l \in FinSet.fromArray l' (\lam a => TruncP.map (q a) \lam p => \let t => nub-isSurj l p.1 \in (t.1, t.2 *> p.2)) nub-isInj } } \lemma QuotientKFin {A : KFinSet} {R : A -> A -> \Type} : KFinSet (Quotient R) A.finCard \cowith | finSurj => TruncP.map A.finSurj \lam s => (\lam j => in~ (s.1 j), \lam (in~ x) => TruncP.map (s.2 x) \lam r => (r.1, pmap in~ r.2))