\import Algebra.Module \import Algebra.Monoid \import Algebra.Ring \import Arith.Real \import Paths \import Topology.NormedAbGroup \import Topology.NormedRing \class PseudoNormedLModule \extends LModule, PseudoNormedAbGroup { \override R : PseudoNormedRing | norm_*c {a : R} {x : E} : norm (a *c x) = norm {R} a * norm x } \class NormedLModule \extends PseudoNormedLModule, NormedAbGroup \class CompleteNormedLModule \extends NormedLModule, CompleteNormedAbGroup \lemma norm_ide=0-module {R : PseudoNormedRing} {X : PseudoNormedLModule R} (p : R.norm 1 = (0 : Real)) {x : X} : norm x = (0 : Real) => pmap norm (inv ide_*c) *> norm_*c *> pmap (`* _) p *> Ring.zro_*-left