\import Algebra.Meta
\import Algebra.Monoid
\import Algebra.Monoid.MonoidHom
\import Algebra.Pointed
\import Arith.Int()
\import Data.Array
\import Data.Fin
\import Data.Or
\import Equiv
\import Function.Meta ($)
\import Logic
\import Logic.Meta
\import Meta
\import Paths
\import Paths.Meta
\import Set
\import Set.Fin
\class Group \extends CancelMonoid {
| inverse : E -> E
| inverse-left {x : E} : inverse x * x = ide
| inverse-right {x : E} : x * inverse x = ide
\default inverse-left => make-inverse-left ide-right inverse inverse-right
\default inverse-right => make-inverse-left {Semigroup.op} ide-left inverse inverse-left
\default ide-left => make-ide-left ide-right inverse inverse-right inverse-left
\default ide-right => make-ide-left {Semigroup.op} ide-left inverse inverse-left inverse-right
| cancel_*-left x {y} {z} p =>
y ==< inv ide-left >==
ide * y ==< pmap (`* y) (inv inverse-left) >==
(inverse x * x) * y ==< *-assoc >==
inverse x * (x * y) ==< pmap (inverse x *) p >==
inverse x * (x * z) ==< inv *-assoc >==
(inverse x * x) * z ==< pmap (`* z) inverse-left >==
ide * z ==< ide-left >==
z `qed
| cancel_*-right z {x} {y} p =>
x ==< inv ide-right >==
x * ide ==< pmap (x *) (inv inverse-right) >==
x * (z * inverse z) ==< inv *-assoc >==
(x * z) * inverse z ==< pmap (`* inverse z) p >==
(y * z) * inverse z ==< *-assoc >==
y * (z * inverse z) ==< pmap (y *) inverse-right >==
y * ide ==< ide-right >==
y `qed
\func ipow (a : E) (x : Int) : E \elim x
| pos n => pow a n
| neg n => pow (inverse a) n
\lemma ipow_+ {a : E} {x y : Int} : ipow a (x + y) = ipow a x * ipow a y \elim x, y
| pos n, pos m => pow_+
| pos n, neg m => ipow_-
| neg n, pos m => ipow_- *> pow-comm2 (inverse-right *> inv inverse-left)
| neg n, neg m => pow_+
\where {
\open Arith.Int.IntRing(+,+-comm)
\lemma ipow_- {a : E} {n m : Nat} : ipow a (n Nat.- m) = pow a n * pow (inverse a) m \elim n, m
| 0, m => inv ide-left
| suc n, 0 => inv ide-right
| suc n, suc m => equation.monoid {ipow_-, inv (pow-left {_} {inverse a}), inverse-right {_} {a}}
}
\lemma ipow_negaitve {a : E} {x : Int} : ipow a (negative x) = inverse (ipow a x) \elim x
| pos n => inv inverse_pow
| neg n => inv inverse-isInv *> pmap inverse inverse_pow
\where \open Arith.Int.IntRing(negative)
\lemma ipow_* {a : E} {x y : Int} : ipow a (x * y) = ipow (ipow a x) y \elim x, y
| pos n, pos m => pow_*
| pos n, neg m => pow_* *> pmap (pow __ m) (inv inverse_pow)
| neg (suc n), pos m => pow_*
| neg (suc n), neg m => pow_* *> pmap (pow __ m) (inv (inverse_pow {_} {_} {suc n} *> pmap (pow __ (suc n)) inverse-isInv))
\where \open Arith.Int.IntRing(*)
\lemma ipow_ide {x : Int} : ipow ide x = ide \elim x
| pos n => pow_ide
| neg n => pmap (pow __ n) inverse_ide *> pow_ide
\lemma inverse-isInv {x : E} : inverse (inverse x) = x
=> AddGroup.negative-isInv {AddGroup.fromGroup \this}
\lemma inverse_ide : inverse ide = ide
=> inv ide-right *> inverse-left
\lemma inverse_* {x y : E} : inverse (x * y) = inverse y * inverse x => cancel_*-left (x * y) (
(x * y) / (x * y) ==< inverse-right >==
ide ==< inv inverse-right >==
x / x ==< pmap (x *) (inv ide-left) >==
x * (ide / x) ==< pmap (x * (__ / x)) (inv inverse-right) >==
x * ((y / y) / x) ==< pmap (x *) *-assoc >==
x * (y * (inverse y / x)) ==< inv *-assoc >==
(x * y) * (inverse y / x) `qed)
\lemma inverse_pow {x : E} {n : Nat} : inverse (pow x n) = pow (inverse x) n \elim n
| 0 => inverse_ide
| suc n => inverse_* *> pmap (_ *) inverse_pow *> pow-left
\lemma makeInv (a : E) : Inv a (inverse a) \cowith
| inv-left => inverse-left
| inv-right => inverse-right
\protected \func op : Group \cowith
| Monoid => Monoid.op
| inverse => inverse
| inverse-left => inverse-right
| inverse-right => inverse-left
\lemma check-for-inv {x y : E} (p : x * y = ide) : y = inverse x
=> simplify in pmap (inverse x *) p
\lemma equality-check {g h : E} (p : inverse g * h = ide) : g = h
=> inv $ simplify in pmap (g *) p
\lemma equality-corrolary (g h : E) (p : g = h) : inverse g * h = ide =>
inverse g * h ==< pmap (inverse g *) (inv p) >==
inverse g * g ==< inverse-left >==
ide `qed
} \where {
\open Monoid(Inv)
\lemma inverse-equality {X : \Set} (G H : Group X) (z : G.ide = H.ide) (m : \Pi {x y : G} -> x G.* y = x H.* y) (e : G) : G.inverse e = H.inverse e
=> pmap (\lam (x : Inv) => x.inv) (Inv.levelProp {G}
(\new Inv e (G.inverse e) G.inverse-left G.inverse-right)
(\new Inv e (H.inverse e) (m *> H.inverse-left *> inv z) (m *> H.inverse-right *> inv z)))
\func equals (G H : Group) (p : G = {Monoid} H) : G = H
=> exts Group {
| Monoid => p
| inverse => inverse-equality
}
\where {
\lemma inverse-equality (e : G) : coe (p @ __) (inverse e) right = inverse (coe (p @ __) e right)
=> \let | h' {H' : Monoid} (q : G = {Monoid} H') => transport (\lam (H' : Monoid) => MonoidHom G H') q MonoidHom.id
| h => transport (MonoidHom G H __) (Jl (\lam (H' : Monoid) q => (h' q).func = (\lam x => coe (q @ __) x right)) idp p) (h' p)
| e' => coe (p @ __) e right
\in MonoidHom.presInvElem h
(\new Inv e (inverse e) inverse-left inverse-right)
(\new Inv e' (inverse e') inverse-left inverse-right)
}
\private \lemma make-inverse-left {M : Semigroup} {ide : M} (ide-right : \Pi {x : M} -> x * ide = x) (inverse : M -> M) (inverse-right : \Pi {x : M} -> x * inverse x = ide) {x : M} : inverse x * x = ide
=> \have | inverse-x-idempotent : (inverse x * x) * (inverse x * x) = inverse x * x =>
(inverse x * x) * (inverse x * x) ==< *-assoc >==
inverse x * (x * (inverse x * x)) ==< pmap (inverse x *) (inv *-assoc) >==
inverse x * ((x * inverse x) * x) ==< cong inverse-right >==
inverse x * (ide * x) ==< inv *-assoc >==
(inverse x * ide) * x ==< cong ide-right >==
inverse x * x `qed
| idempotent-is-trivial {a : M} (a-idempotent : a * a = a) : a = ide =>
a ==< inv ide-right >==
a * ide ==< cong (inv inverse-right) >==
a * (a * inverse a) ==< inv *-assoc >==
(a * a) * inverse a ==< cong a-idempotent >==
a * inverse a ==< inverse-right >==
ide `qed
\in idempotent-is-trivial inverse-x-idempotent
\private \lemma make-ide-left {M : Semigroup} {ide : M} (ide-right : \Pi {x : M} -> * x ide = x) (inverse : M -> M)
(inverse-right : \Pi {x : M} -> x * inverse x = ide) (inverse-left : \Pi {x : M} -> inverse x * x = ide) {x : M} : * ide x = x
=> ide * x ==< pmap (`* x) (inv inverse-right) >==
(x * inverse x) * x ==< *-assoc >==
x * (inverse x * x) ==< cong inverse-left >==
x * ide ==< ide-right >==
x `qed
\func translate-is-Equiv {G : Group} (h : G) : QEquiv (h *) \cowith
| ret => inverse h *
| ret_f _ => rewrite (inv G.*-assoc, G.inverse-left, G.ide-left) idp
| f_sec _ => rewrite (inv G.*-assoc, G.inverse-right, G.ide-left) idp
\class Dec \extends Group, DecSet
}
\func \infixl 7 / {G : Group} (x y : G) => x * inverse y
\func conjugate {E : Group} (g h : E)
=> g * h * inverse g
\lemma conjugate-via-id {G : Group} {g : G} : conjugate ide g = g =>
conjugate ide g ==< idp >==
ide * g * inverse ide ==< *-assoc >==
ide * (g * inverse ide) ==< ide-left >==
g * inverse ide ==< pmap (g *) Group.inverse_ide >==
g * ide ==< ide-right >==
g `qed
\class AddGroup \extends AddMonoid {
| negative : E -> E
| negative-left {x : E} : negative x + x = zro
| negative-right {x : E} : x + negative x = zro
\lemma cancel-left (x : E) {y z : E} (p : x + y = x + z) : y = z =>
Group.cancel_*-left {toGroup \this} x p
\lemma cancel-right (z : E) {x y : E} (p : x + z = y + z) : x = y =>
Group.cancel_*-right {toGroup \this} z p
\lemma negative-isInv {x : E} : negative (negative x) = x =>
cancel-left (negative x) (negative-right *> inv negative-left)
\lemma negative_+ {x y : E} : negative (x + y) = negative y - x
=> Group.inverse_* {toGroup \this}
\lemma negative_- {x y : E} : negative (x - y) = y - x
=> negative_+ *> pmap (`- x) negative-isInv
\lemma negative_zro : negative zro = zro
=> inv zro-right *> negative-left
\lemma minus_zro {x : E} : x - zro = x
=> pmap (x +) negative_zro *> zro-right
\lemma fromZero {x y : E} (x-y=0 : x - y = zro) : x = y =>
x ==< inv zro-right >==
x + zro ==< pmap (x +) (inv negative-left) >==
x + (negative y + y) ==< inv +-assoc >==
x - y + y ==< pmap (`+ y) x-y=0 >==
zro + y ==< zro-left >==
y `qed
\lemma toZero {x y : E} (x=y : x = y) : x - y = zro => rewriteI x=y negative-right
\lemma *n_negative {n : Nat} {a : E} : n *n negative a = negative (n *n a)
=> *n_pow *> inv \this.inverse_pow *> inv (pmap negative *n_pow)
\func \infixl 7 *i (x : Int) (a : E) : E \elim x
| pos n => n *n a
| neg n => n *n negative a
\protected \lemma *i_ipow {x : Int} {a : E} : x *i a = \this.ipow a x \elim x
| pos n => *n_pow
| neg n => *n_pow
\lemma *i-assoc {x y : Int} {a : E} : (x * y) *i a = x *i (y *i a)
=> pmap (`*i _) *-comm *> *i_ipow *> \this.ipow_* *> inv (pmap (_ *i) *i_ipow *> *i_ipow)
\where \open Arith.Int.IntRing(*,*-comm)
\lemma *i-rdistr {x y : Int} {a : E} : (x Arith.Int.IntRing.+ y) *i a = x *i a + y *i a
=> *i_ipow *> \this.ipow_+ *> inv (pmap2 (+) *i_ipow *i_ipow)
\lemma diff_+ {x y z : E} : (z - y) + (y - x) = z - x =>
(z - y) + (y - x) ==< +-assoc >==
z + (negative y + (y - x)) ==< inv (pmap (z +) +-assoc) >==
z + ((negative y + y) - x) ==< pmap (z + (__ - x)) negative-left >==
z + (zro - x) ==< pmap (z +) zro-left >==
z - x `qed
} \where {
\use \coerce fromGroup (G : Group) => \new AddGroup G.E G.ide (G.*) G.ide-left G.ide-right G.*-assoc G.inverse G.inverse-left G.inverse-right
\use \coerce toGroup (G : AddGroup) => \new Group G.E G.zro (G.+) G.+-assoc G.zro-left G.zro-right G.negative G.negative-left G.negative-right
\lemma negative-equality {X : \Set} (A B : AddGroup X) (z : A.zro = B.zro) (m : \Pi {x y : A} -> x A.+ y = x B.+ y) (e : A) : A.negative e = B.negative e
=> Group.inverse-equality A B z m e
-- | An additive group with a tight apartness relation.
\class With# \extends AddGroup, Set# {
| \fix 8 #0 : E -> \Prop
| #0-zro : Not (zro `#0)
| #0-negative {x : E} : x `#0 -> negative x `#0
| #0-+ {x y : E} : (x + y) `#0 -> x `#0 || y `#0
| #0-tight {x : E} : Not (x `#0) -> x = zro
| # x y => (x - y) `#0
| #-irreflexive x-x#0 => #0-zro (transport #0 negative-right x-x#0)
| #-symmetric x-y#0 => transport #0 (negative_+ *> pmap (`+ negative _) negative-isInv) (#0-negative x-y#0)
| #-comparison x y z x-z#0 => #0-+ (transport #0 (inv diff_+) x-z#0)
| tightness x-y/#0 => fromZero (#0-tight x-y/#0)
\lemma apartNonZero {x : E} (x#0 : x `#0) : x /= zro
=> \lam x=0 => #0-zro (transport #0 x=0 x#0)
\lemma #0-negative-inv {x : E} (p : negative x `#0) : x `#0
=> transport #0 negative-isInv (#0-negative p)
\lemma #0-+-left {x y : E} (x#0 : #0 x) : #0 (x + y) || #0 y
=> ||.map (\lam r => r) #0-negative-inv $ #0-+ $ transportInv #0 (+-assoc *> pmap (x +) negative-right *> zro-right) x#0
\lemma #0-+-right {x y : E} (y#0 : #0 y) : #0 (x + y) || #0 x
=> ||.rec' (\lam r => byRight (#0-negative-inv r)) byLeft $ #0-+ {_} {negative x} {x + y} $ transportInv #0 simplify y#0
\lemma #0-BigSum {l : Array E} (p : BigSum l `#0) : ∃ (j : Fin l.len) (l j `#0) \elim l
| nil => absurd (#0-zro p)
| a :: l => \case #0-+ p \with {
| byLeft a#0 => inP (0, a#0)
| byRight p' => \case #0-BigSum p' \with {
| inP (j,lj#0) => inP (suc j, lj#0)
}
}
\lemma #0-BigSum-conv {l : Array E} {i : Fin l.len} (p : l i `#0) : BigSum l `#0 || (\Sigma (j : Fin l.len) (j /= i) (l j `#0)) \elim l, i
| a :: l, 0 => \case #0-+-left p \with {
| byLeft r => byLeft r
| byRight l#0 => \case #0-BigSum l#0 \with {
| inP (j,lj#0) => byRight (suc j, \case __ \with {}, lj#0)
}
}
| a :: l, suc i => \case #0-BigSum-conv p \with {
| byLeft l#0 => \case #0-+-right {_} {a} l#0 \with {
| byLeft r => byLeft r
| byRight a#0 => byRight (0, \case __ \with {}, a#0)
}
| byRight (j,j/=i,lj#0) => byRight (suc j, fsuc/= j/=i, lj#0)
}
}
-- | An additive group with decidable equality.
\class Dec \extends With#, DecSet {
| nonZeroApart {x : E} (x/=0 : x /= zro) : x `#0
| #0-negative x#0 => nonZeroApart (\lam -x=0 => #0-zro (transport #0 (inv negative-isInv *> pmap negative -x=0 *> negative_zro) x#0))
| #0-+ {x} {y} x+y#0 => \case decideEq y zro \with {
| yes y=0 => byLeft (transport #0 (pmap (x +) y=0 *> zro-right) x+y#0)
| no y/=0 => byRight (nonZeroApart y/=0)
}
| #0-tight {x} x/#0 => \case decideEq x zro \with {
| yes x=0 => x=0
| no x/=0 => absurd (x/#0 (nonZeroApart x/=0))
}
| nonEqualApart p => nonZeroApart (\lam x-y=0 => p (fromZero x-y=0))
\default #0 x : \Prop => x /= zro
\default #0-zro (zro/=0 : #0 zro) : Empty => zro/=0 idp
\default nonZeroApart \as notEqualApartImpl {x} x#0 : #0 x => x#0
\lemma decide#0 (a : E) : Or (a = 0) (a With#.`#0) \level Or.levelProp (\lam p q => apartNonZero q p)
=> \case decideEq a 0 \with {
| yes e => inl e
| no q => inr (nonZeroApart q)
}
}
}
\func \infixl 6 - {G : AddGroup} (x y : G) => x + negative y
\class CGroup \extends Group, CancelCMonoid {
| inverse-right => *-comm *> inverse-left
\lemma ipow_*-comm {a b : E} {x : Int} : ipow (a * b) x = ipow a x * ipow b x \elim x
| pos n => pow_*-comm
| neg n => pmap (pow __ n) (inverse_* *> *-comm) *> pow_*-comm
\lemma BigProd_inverse {l : Array E} : inverse (BigProd l) = BigProd (map inverse l)
=> AbGroup.BigSum_negative {AbGroup.fromCGroup \this}
\lemma BigProd_ipow {k : Int} {l : Array E} : BigProd (\lam i => ipow (l i) k) = ipow (BigProd l) k \elim k
| pos n => BigProd_pow
| neg n => later (BigProd-ext {_} {l.len} \lam i => inv inverse_pow) *> inv BigProd_inverse *> pmap inverse BigProd_pow *> inverse_pow
}
\class AbGroup \extends AddGroup, AbMonoid {
| negative-right => +-comm *> negative-left
\lemma *n-ldistr_- {n : Nat} {a b : E} : n *n (a - b) = n *n a - n *n b
=> *n-ldistr *> pmap (_ +) *n_negative
\lemma *i-ldistr {a b : E} {x : Int} : x *i (a + b) = x *i a + x *i b
=> *i_ipow *> \this.ipow_*-comm *> inv (pmap2 (+) *i_ipow *i_ipow)
\lemma BigSum_negative {l : Array E} : negative (BigSum l) = BigSum (map negative l) \elim l
| nil => negative_zro
| a :: l => negative_+ *> +-comm *> pmap (_ +) BigSum_negative
\lemma sum-cancel-left {x y z : E} : x + z - (x + y) = z - y
=> pmap (_ +) negative_+ *> pmap2 (+) +-comm +-comm *> +-assoc *> pmap (z +) (inv +-assoc *> pmap (`- y) negative-right *> zro-left)
\lemma sum-cancel-right {x y z : E} : z + x - (y + x) = z - y
=> rewrite (+-comm {_} {z}, +-comm {_} {y}) sum-cancel-left
\lemma diff-cancel-left {x y z : E} : x - z - (x - y) = y - z
=> sum-cancel-left *> +-comm *> pmap (`- z) negative-isInv
\lemma negative_+-comm {x y : E} : negative (x + y) = negative x - y
=> negative_+ *> +-comm
\lemma diff_sum {x y z : E} : x - (y + z) = x - y - z
=> pmap (x +) negative_+-comm *> inv +-assoc
\lemma diff_diff {x y z : E} : x - (y - z) = x - y + z
=> diff_sum *> pmap (x - y + __) negative-isInv
} \where {
\use \coerce fromCGroup (G : CGroup) => \new AbGroup G.E G.ide (G.*) G.ide-left G.ide-right G.*-assoc G.inverse G.inverse-left G.*-comm
\use \coerce toCGroup (G : AbGroup) => \new CGroup G.E G.zro (G.+) G.+-assoc G.zro-left G.zro-right G.negative G.negative-left G.+-comm
\func equals (A B : AbGroup) (p : A = {AddGroup} B) : A = B
=> path (\lam i => \new AbGroup {
| AddGroup => p @ i
| +-comm => prop-dpi (\Pi {x y : p @ __} -> x + y = y + x) A.+-comm B.+-comm @ i
})
}
\class FinGroup \extends Group, Group.Dec, FinSet