\import Algebra.Group
\import Algebra.Group.Sub
\import Algebra.Meta
\import Algebra.Monoid
\import Algebra.Monoid.Sub
\import Algebra.Pointed
\import Equiv
\import Function
\import Function.Meta ($)
\import Logic
\import Logic.Meta
\import Paths
\import Paths.Meta
\import Relation.Equivalence
\import Set
\import Algebra.Monoid
\import Set.Category
\class GroupAction (G : Group) \extends BaseSet {
| \infixl 8 ** : G -> E -> E
| **-assoc {m n : G} {e : E} : m ** (n ** e) = (m * n) ** e
| id-action {e : E} : ide ** e = e
\func Stabilizer (s : E) : SubGroup G \cowith
| contains m => m ** s = s
| contains_* {m n : G} (p : m ** s = s) (q : n ** s = s) =>
(m * n) ** s ==< inv **-assoc >==
m ** (n ** s) ==< pmap (\lam x => m ** x) q >==
m ** s ==< p >==
s `qed
| contains_ide => id-action
| contains_inverse {m : G} (p : m ** s = s) =>
inverse m ** s ==< pmap (\lam x => inverse m ** x) (inv p) >==
inverse m ** (m ** s) ==< **-assoc >==
(inverse m * m) ** s ==< pmap (\lam x => x ** s) inverse-left >==
ide ** s ==< id-action >==
s `qed
\func choosePoint (e : E) => ActionBySubgroup (Stabilizer e)
}
\class TransitiveGroupAction \extends GroupAction {
| trans : \Pi (v v' : E) -> ∃ (g : G) (g ** v = v')
}
\func ActionBySubgroup {G : Group} (H : SubGroup G) : GroupAction G \cowith
| E => H.Cosets
| ** (g : G) (e : H.Cosets) : H.Cosets \with {
| g, in~ a => in~ (g * a)
| g, ~-equiv x y r => in~ (g * x) ==< H.invariant-right-multiplication (H.equivalence-to-1 r) >==
in~ (g * x * (inverse x * y)) ==< pmap in~ (trivialRelation g x y ) >== in~ (g * y) `qed
}
| **-assoc {m n : G} {e : H.Cosets} : m ** (n ** e) = (m * n) ** e => \case \elim e \with{
| in~ a => m ** (n ** in~ a) ==< pmap (m **) {n ** in~ a} {in~ (n * a)} idp >==
m ** in~ (n * a) ==< idp >==
in~ (m * (n * a)) ==< pmap in~ (inv *-assoc) >==
in~ ((m * n) * a) ==< idp >==
(m * n) ** in~ a `qed
}
| id-action {e : H.Cosets} : ide ** e = e => \case \elim e \with{
| in~ a => ide ** in~ a ==< idp >==
in~ (ide * a) ==< pmap in~ ide-left >==
in~ a `qed
}
\where \func trivialRelation (g x y : G) : g * x * (inverse x * y) = g * y =>
g * x * (inverse x * y) ==< *-assoc >==
g * (x * (inverse x * y)) ==< pmap (g *) (inv *-assoc) >==
g * ((x * inverse x) * y) ==< pmap (\lam z => g *( z * y)) inverse-right >==
g * (ide * y) ==< pmap (g *) ide-left >==
g * y `qed
\instance TransitiveActionBySubgroup {G : Group} (H : SubGroup G) : TransitiveGroupAction G
| GroupAction => ActionBySubgroup H
| trans (v v' : H.Cosets) : ∃ (g : G) (g ActionBySubgroup.** v = v') => \case \elim v, \elim v'\with{
| in~ a, in~ a1 => inP(a1 * inverse a ,
in~ (a1 * inverse a * a) ==< pmap in~ *-assoc >==
in~ (a1 * (inverse a * a)) ==< pmap (\lam z => in~ (a1 * z)) inverse-left >==
in~ (a1 * ide) ==< pmap in~ ide-right >==
in~ a1 `qed
)
}
\func conjAction (G : Group) : GroupAction G \cowith
| E => G
| ** (g : G) => conjugate g
| **-assoc {m : G} {n : G} {e : G} : conjugate m (conjugate n e) = conjugate (m * n) e =>
conjugate m (conjugate n e) ==< pmap (conjugate m) idp >==
conjugate m (n * e * inverse n ) ==< idp >==
m * (n * e * inverse n ) * inverse m ==< lemma-par >==
(m * n) * e * (inverse n * inverse m) ==< pmap ((m * n * e) *) (inv G.inverse_*) >==
(m * n) * e * (inverse (m * n)) ==< idp >==
conjugate (m * n) e `qed
| id-action {e : G} : conjugate ide e = e => conjugate-via-id e
\where \lemma lemma-par {a b c d e : G} : a * (b * c * d) * e = (a * b) * c * (d * e) => equation