\import Algebra.Group \import Algebra.Group.Sub \import Algebra.Monoid \import Algebra.Monoid.Category \import Algebra.Pointed \import Algebra.Pointed.Category \import Category (Cat, Precat) \import Category.Functor \import Category.Meta \import Category.Subcat \import Equiv \import Function \import Function.Meta \import Logic \import Logic.Meta \import Paths \import Paths.Meta \import Relation.Equivalence \import Set.Category \import Algebra.Group.Category \open Group \open Algebra.Group.Sub \func \infix 7 // (G : Group) (H : NormalSubGroup G) : Group => H.quotient {- | properties needed from a commutative triangle $$X \to Y \to Z$$ in the category of groups -} \class GroupTriangle \noclassifying (X Y Z : Group) (f : GroupHom X Y) (g : GroupHom Y Z) (h : GroupHom X Z)(comm : h = g GroupCat.∘ f){ \func surjectivity-2-out-3 (p : isSurj h) (q : isSurj f) : isSurj g => \lam (z : Z) => surjectivity-2-out-3-pw p q z \func surjectivity-2-out-3-pw (p : isSurj h) (q : isSurj f) (z : Z): ∃(y : Y) (g y = z) => \case p z \with { | inP a => inP (f a.1, g (f a.1) ==< helper >== h a.1 ==< a.2 >== z `qed) } \where \func helper {a : X} : g (f a) = h a => g (f a) ==< idp >== (g GroupCat.∘ f) a ==< pmap (\lam (e : GroupHom X Z) => e a) (inv comm) >== h a `qed } \class UniversalGroupQuotient \noclassifying (G H : Group)(f : GroupHom G H)(N : NormalSubGroup G)(p : N SubGroupPreorder.<= f.Kernel){ {- | a set function that having $G, H$ and $f : G \to H$ and a - normal subgroup $N \leq G$ s.t. $N \leqslant \ker(f)$ produces for each element of $G/N$ an element of $H$. - One gets a diagram of the form - $$G \xrightarrow{\pi} G/N \xrightarrow{\text{this\, function}} H $$ -} \func universalQuotientMorphismSetwise (a : N.quotient) : H \elim a | in~ n => f n | ~-equiv y x r => equality-check (inverse (f y) * (f x) ==< pmap (\lam y => y * (f x)) (inv f.func-inverse) >== f (inverse y) * (f x) ==< inv func-* >== f (inverse y * x) ==< lemma' f N p r >== ide `qed) \where \lemma lemma' {x y : G} (f : GroupHom G H) (N : NormalSubGroup G) (p : N SubGroupPreorder.<= f.Kernel) (r : N.contains ((inverse y) * x)) : f (inverse y * x) = ide => f (inverse y * x) ==< p ((inverse y) * x) r >== ide `qed {- | this a synonym for universalQuotientMorphismSetwise used because it is shorter-} \func uqms => universalQuotientMorphismSetwise {- | this is a proof that in the previous assumptions the function - universalQuotientMorphismSetwise is multiplicative -} \func universalQuotientMorphismMultiplicative (x y : N.quotient) : uqms (x N.quotient.* y) = (uqms x) * (uqms y) \elim x, y | in~ a, in~ a1 => uqms ((in~ a) N.quotient.* (in~ a1)) ==< idp >== uqms (in~ (a * a1)) ==< idp >== f (a * a1) ==< f.func-* >== (f a) * (f a1) ==< pmap ((f a)*) idp >== (f a) * uqms (in~ a1) ==< pmap (\lam x => x * uqms (in~ a1)) idp >== (uqms (in~ a)) * (uqms (in~ a1)) `qed {- | this is a function which gives the homomorphism in the universal property - of quotient groups. Basically, it proves - that the function universalQuotientMorphismSetwise - indeed gives a group homomorphism. Thus the arrow $G/N \xrightarrow{\text{uqms}} H$ indeed lies in Group-} \func universalQuotientMorph : GroupHom (G // N) H \cowith | func => uqms | func-ide => uqms N.quotient.ide ==< idp >== uqms (in~ 1) ==< idp >== f ide ==< f.func-ide >== ide `qed | func-* {x y : N.quotient} => universalQuotientMorphismMultiplicative x y \lemma universalQuotientProperty : universalQuotientMorph GroupCat.∘ quotient-map = f => exts (\lam (x : G) => (universalQuotientMorph GroupCat.∘ quotient-map) x ==< idp >== universalQuotientMorph (quotient-map x) ==< idp >== universalQuotientMorph (in~ x) ==< idp >== f x `qed) } {- | Now we apply all of these universal properties to the case when $N = \ker f$ and we get the first isomorphism theorem in the end-} \class FirstIsomorphismTheorem \noclassifying (G : Group) (H : Group) (f : GroupHom G H) { \func UniversalProperties : UniversalGroupQuotient {| G => G | H => H | f => f} \cowith | N => f.Kernel | p => SubGroupPreorder.<=-refl \func Triangle : GroupTriangle \cowith | X => G | Y => G // f.Kernel | Z => H | f => quot | g => UniversalProperties.universalQuotientMorph | h => f | comm => UniversalProperties.universalQuotientProperty \func univ : GroupHom (G // f.Kernel) H => UniversalProperties.universalQuotientMorph \func quot : GroupHom G (G // f.Kernel) => quotient-map \lemma universalKerProp : univ GroupCat.∘ quot = f => UniversalProperties.universalQuotientProperty \lemma universalQuotientKernel (g : G // f.Kernel) (q : univ g = ide) : g = f.Kernel.quotient.ide => \case g \as b, idp : g = b \return b = f.Kernel.quotient.ide\with{ | in~ a, p => inv (f.Kernel.criterionForKernel a (universalQuotientKernel' a (transport (\lam z => univ z = ide) p q)) ) } \where{ \func helper-1 (a : G) (q : univ (in~ a) = ide) : in~ a = f.Kernel.quotient.ide => inv (f.Kernel.criterionForKernel a (universalQuotientKernel' a q)) } \func evidTrivKer : univ.TrivialKernel => \lam {g : G // f.Kernel} (p : univ.Kernel.contains g) => universalQuotientKernel g p \lemma universalQuotientKernel' (a : G) (q : univ (in~ a) = ide) : f.Kernel.contains a => f a ==< inv (technical-helper a) >== univ (in~ a) ==< q >== ide `qed \where \lemma technical-helper (a : G) : univ (in~ a) = f a => univ (in~ a) ==< pmap univ {in~ a} {quot a} idp >== univ (quot a) ==< idp >== (univ GroupCat.∘ quot) a ==< pmap (\lam (z : GroupHom G H) => z a) universalKerProp >== f a `qed \lemma univKer-mono : isInj univ.func => univ.Kernel-injectivity-test evidTrivKer \func univKer-epi (p : isSurj f): isSurj univ => Triangle.surjectivity-2-out-3 p f.Kernel.quotIsSurj \func FirstIsoTheorem (p : isSurj f) : univ.isIsomorphism => (univKer-mono, univKer-epi p) }