\import Algebra.Field \import Algebra.Group \import Algebra.Group.Category \import Algebra.Monoid \import Algebra.Monoid.Category \import Algebra.Pointed \import Algebra.Ring \import Algebra.Ring.Category \import Algebra.Ring.MPoly \import Algebra.Ring.Poly \import Algebra.Semiring \import Arith.Int \import Arith.Nat \import Category \import Function (isInj) \import Function.Meta \import HLevel \import Logic \import Logic.Meta \import Paths \import Paths.Meta \record SemiringHom \extends AddMonoidHom, MonoidHom { \override Dom : Semiring \override Cod : Semiring \lemma func-natCoef {n : Nat} : func (natCoef n) = natCoef n \elim n | 0 => rewrite (natCoefZero,natCoefZero) func-zro | suc n => rewrite (natCoefSuc,natCoefSuc) $ func-+ *> pmap2 (+) func-natCoef func-ide } \record RingHom \extends SemiringHom, AddGroupHom { \override Dom : Ring \override Cod : Ring } \where { \func equals {R S : Ring} {f g : RingHom R S} (p : \Pi (x : R) -> f x = g x) : f = g => exts p \lemma contr-isTerm {R S : Ring} (c : Contr S) : Contr (RingHom R S) \cowith | center => \new RingHom { | func _ => c.center | func-+ => c.contraction _ | func-ide => c.contraction _ | func-* => c.contraction _ } | contraction f => exts \lam e => c.contraction _ \lemma field-isInj {K : Field} {R : NonZeroRing} {f : RingHom K R} : isInj f => f.injective \lam p => K.#0-tight \lam a#0 => R.inv-nonZero (f.func-Inv a#0) p \type isAlgebraGenerated {R E : CRing} (f : RingHom R E) (l : Array E) : \Prop => \Pi (x : E) -> ∃ (p : MPoly (Fin l.len) R) (x = mPolyEval l (mPoly-map f p)) \type isFiniteAlgebra {R E : CRing} (f : RingHom R E) : \Prop => ∃ (l : Array E) (isAlgebraGenerated f l) \lemma isAlgebraGenerated-comp {R E S : CRing} {f : RingHom R E} {g : RingHom E S} {a : E} {l : Array S} (fg : \Pi (x : E) -> ∃ (p : Poly R) (polyMapEval f p a = x)) (gg : isAlgebraGenerated g l) : isAlgebraGenerated (g ∘ f) (g a :: l) => \lam x => \have | (inP (p,pq)) => gg x | (inP ((s : MPoly (Fin l.len) (PolyAlgebra R)),sq)) => MPoly-surj {Fin l.len} (polyMapEvalRingHom f a) fg p \in inP (MPoly_Fin-suc'.retHom s, pq *> rewrite (inv sq, MPoly_Fin-suc'.map-comm) (pmap (mPolyEval l) (inv mPoly-map-comp *> pmap (mPoly-map __ s) (exts \lam p => inv polyEval_polyMap *> pmap (polyEval __ _) (polyMap-comp f g)) *> mPoly-map-comp {_} {PolyAlgebra R} {PolyAlgebra S}) *> inv MPoly_Fin-suc'.eval-comm)) \lemma isAlgebraGenerated-poly {R E : CRing} {f : RingHom R E} {a : E} (fg : \Pi (x : E) -> ∃ (p : Poly R) (polyMapEval f p a = x)) : isAlgebraGenerated f (a :: nil) => isAlgebraGenerated-comp {R} {E} {E} {f} {id E} {a} {nil} fg \lam x => inP (mConst x, simplify) } \func natMap {R : Semiring} : SemiringHom NatSemiring R \cowith | func => natCoef | func-+ {n m : Nat} : R.natCoef (n + m) = natCoef n + natCoef m \elim m { | 0 => inv (pmap (natCoef n +) natCoefZero *> zro-right) | suc m => natCoefSuc (n + m) *> pmap (`+ ide) func-+ *> +-assoc *> pmap (natCoef n +) (inv (natCoefSuc m)) } | func-zro => natCoefZero | func-ide => natCoefSuc 0 *> pmap (`+ ide) natCoefZero *> zro-left | func-* {n m : Nat} : R.natCoef (n * m) = natCoef n * natCoef m \elim m { | 0 => natCoefZero *> inv (pmap (natCoef n *) natCoefZero *> zro_*-right) | suc m => func-+ *> pmap (`+ natCoef n) func-* *> inv (pmap (natCoef n *) (natCoefSuc m) *> ldistr *> pmap (natCoef n * natCoef m +) ide-right) } \lemma natComm {R : Semiring} (n : Nat) (x : R) : natMap n * x = x * natMap n \elim n | 0 => pmap (`* x) natCoefZero *> zro_*-left *> inv (pmap (x *) natCoefZero *> zro_*-right) | suc n => pmap (`* x) (natCoefSuc n) *> rdistr *> pmap (natCoef n * x +) ide-left *> pmap (`+ x) (natComm n x) *> inv (pmap (x *) (natCoefSuc n) *> ldistr *> pmap (x * natCoef n +) ide-right) \func intMap {R : Ring} : RingHom IntRing R \cowith | func => intCoef | func-+ {x y : Int} : R.intCoef (x + y) = intCoef x + intCoef y \elim x, y { | pos n, pos m => natMap.func-+ | pos n, neg (suc _ \as m) => intCoef_diff n m | neg (suc _ \as n), pos m => intCoef_diff m n *> +-comm | neg (suc _ \as n), neg (suc _ \as m) => pmap negative natMap.func-+ *> negative_+ *> +-comm } | func-ide => natMap.func-ide | func-* {x y : Int} : R.intCoef (x * y) = intCoef x * intCoef y \elim x, y { | pos n, pos m => natMap.func-* | pos n, neg (suc _ \as m) => intCoef_neg _ *> pmap negative natMap.func-* *> inv negative_*-right | neg (suc _ \as n), pos m => intCoef_neg _ *> pmap negative natMap.func-* *> inv negative_*-left | neg (suc _ \as n), neg m => natMap.func-* *> inv (pmap (negative (natCoef n) *) (intCoef_neg m) *> negative_*) } \where { \open AddGroup(negative_zro,negative_+) \open Ring \lemma intCoef_diff {R : Ring} (n m : Nat) : R.intCoef (n Nat.- m) = intCoef n - intCoef m \elim n, m | 0, 0 => inv (pmap (natCoef 0 + negative __) natCoefZero *> pmap (natCoef 0 +) negative_zro *> zro-right) | 0, suc _ \as m => inv (pmap (__ - natCoef m) natCoefZero *> zro-left) | suc _ \as n, 0 => inv (pmap (natCoef n + negative __) natCoefZero *> pmap (natCoef n +) negative_zro *> zro-right) | suc n, suc m => intCoef_diff n m *> pmap (natCoef n +) (inv (pmap (ide +) negative_+ *> inv +-assoc *> pmap (`- natCoef m) negative-right *> zro-left)) *> inv (pmap2 (__ + negative __) (natCoefSuc n) (natCoefSuc m) *> +-assoc) } \lemma intComm {R : Ring} (n : Int) (x : R) : intMap n * x = x * intMap n \elim n | pos n => natComm n x | neg n => rewrite Ring.intCoef_neg (Ring.negative_*-left *> pmap negative (natComm n x) *> inv Ring.negative_*-right)