\import Algebra.Meta \import Category \import Category.Adjoint \import Category.Coreflection \hiding (LAdj) \import Category.Functor \import Category.Limit \import Category.Product \import Equiv \import Function.Meta \import HLevel \import Meta \import Paths \import Paths.Meta \import Set.Category \func isExponential {C : CartesianPrecat} (X : C) => RightAdjoint C C { | LAdj => C.bprodFunctorRight X } \func isExponentiable {C : CartesianPrecat} (Y : C) => \Pi (X : C) -> Coreflection (C.bprodFunctorRight X) Y \class CartesianClosedPrecat \extends CartesianPrecat { | exp (X : Ob) : isExponential X \func is-exponentiable (X : Ob) : isExponentiable X => \lam Y => coreflection {RightAdjointCoreflection.fromAdjointCounit (RightAdjointCounit.fromAdjoint $ exp Y)} X \func transpose {X Y Z : Ob} : Hom (Bprod X Y) Z -> Hom X (exp Y Z) => isAdjoint \func antitranspose {X Y Z : Ob} : Hom X (exp Y Z) -> Hom (Bprod X Y) Z => isAdjoint.ret \func antitranpose-eq {X Y Z : Ob} (f : Hom (Bprod X Y) Z) : antitranspose (transpose f) = f => isAdjoint.ret_f f \func eval-map {Y Z : Ob} : Hom (Bprod (exp Y Z) Y) Z => antitranspose (id (exp Y Z)) \func eval-transpose {X Y Z : Ob} (g : Hom (Bprod X Y) Z) : eval-map ∘ prodMap (transpose g) (id Y) = g => rewrite (inv $ RightAdjoint.adjoint_epsilon {exp Y} _) $ antitranpose-eq g \func eval-map-eq {X Y : Ob} (f : Hom X Y) : eval-map ∘ prodMap (name f) (id X) ∘ pair terminalMap (id X) = f => run { unfold name, rewrite (eval-transpose _), unfold, rewrite (o-assoc, beta2 _ _, id-right), idp } \func internal-comp {X Y Z : Ob} : Hom (Bprod (exp Y Z) (exp X Y)) (exp X Z) => transpose $ (eval-map ∘ prodMap (id (exp Y Z)) eval-map) ∘ associator \func name {X Y : Ob} (f : Hom X Y) : Hom terminal (exp X Y) => transpose $ f ∘ terminal-prod-left.hinv \func global-elements-iso {X Y : Ob} : Equiv {Hom X Y} {Hom terminal (exp X Y)} name => \new QEquiv { | ret f => (antitranspose f) ∘ terminal-prod-left.f | ret_f _ => unfold name $ rewrite (antitranpose-eq _, o-assoc, terminal-prod-left.hinv_f, id-right) idp | f_sec y => unfold name $ rewrite (o-assoc, terminal-prod-left.f_hinv, id-right) $ isAdjoint.f_ret y } \func internal-homFunctor : Functor (ProductPrecat (Precat.op {\this}) \this) \this => \new Functor { | F (X, Y) => exp X Y | Func {(a, b)} {(c, d)} (f, g) => unfold at f $ transpose $ g ∘ eval-map ∘ prodMap (id _) f | Func-id {(a, b)} => isAdjoint.adjointInv $ unfold $ rewrite (id-left, prod-id, id-right) idp | Func-o {(a1, b1)} {(a2, b2)} {(a3, b3)} {(f,g)} {(p,q)} => run { isAdjoint.adjointInv, unfold, rewrite (RightAdjoint.adjoint_epsilon {exp a3} _), rewrite (prod-id-right _ _, inv o-assoc, eval-transpose), rewrite {3} o-assoc , rewrite (inv $ prodMap-comp _ _ _ _, id-left, id-right), rewrite {2} (prodMap-split-right _ _), rewrite {3} o-assoc, rewriteI {2} o-assoc, rewrite eval-transpose , rewrite {3} o-assoc , rewrite (inv $ prod-id-left _ _), equation } } } \open PrecatWithBprod \instance SetCartesianClosed : CartesianClosedPrecat SetBicat | CartesianPrecat => SetBicat | exp X => RightAdjointCoreflection.toAdjointCounit (exp-coreflection X) \where { \func exp-coreflection (X : SetBicat) : RightAdjointCoreflection SetBicat SetBicat (SetBicat.bprodFunctorRight X) \cowith | coreflection => power-coreflection X \func power-coreflection (X Z : SetBicat) : Coreflection (SetBicat.bprodFunctorRight X) Z \cowith | Coreflected => X -> Z | corefl-map => apply | isCoreflection {_} => \new QEquiv { | ret => curry | ret_f f => ext (\lam _ _ => unfold $ unfold (apply, curry) $ rewrite (proj1-prodMap-applied f (id X) _, proj2-prodMap f (id X) _, proj1-unname-pair, proj2-unname-pair) idp) | f_sec => f_sec } \where { \func apply (f : Product.apex {Bprod {SetBicat} (X -> Z) X}) : Z => (proj1 {SetBicat} f) (proj2 {SetBicat} f) \func curry {Y : SetBicat} (f : Product.apex {Bprod {SetBicat} Y X} -> Z) : Y -> X -> Z => \lam (y : Y) (x : X) => f (unname' $ pair {SetBicat} (name' y) (name' x)) \func f_sec {Y : SetBicat} (g : Product.apex {Bprod {SetBicat} Y X} -> Z) : (\lam x => apply (prodMap {SetBicat} (curry g) (id X) x)) = g => ext (\lam f => unfold apply $ rewrite (proj1-prodMap-applied (curry g) (id X) f, proj2-prodMap (curry g) (id X) f) $ curry-eq g f) \func curry-eq {Y : SetBicat} (g : Product.apex {Bprod {SetBicat} Y X} -> Z) (f : Product.apex {Bprod {SetBicat} Y X}) : curry g (proj1 {SetBicat} f) (proj2 {SetBicat} f) = g f => unfold curry $ pmap g $ bprod-ext (proj1-unname-pair (proj1 {SetBicat} f) (proj2 {SetBicat} f)) (proj2-unname-pair (proj1 {SetBicat} f) (proj2 {SetBicat} f)) } \func from_terminal : Hom {SetBicat} terminal.apex (\Sigma) => \lam _ => () \func to_terminal : Hom {SetBicat} (\Sigma) terminal.apex => PrecatWithTerminal.terminalMap {SetBicat} \func name' {X : SetBicat} (x : X) : Hom {SetBicat} terminal.apex X => \lam _ => x \func unname' {X : SetBicat} (f : Hom {SetBicat} terminal.apex X) : X => (f SetBicat.∘ to_terminal) () \func terminal-obj-prop : isProp terminal.apex => \lam a a' => path (\lam i => (PrecatWithTerminal.terminal-unique {SetBicat} {\Sigma} {\lam _ => a} {\lam _ => a'} @ i) ()) \func global-elements-iso {X : SetBicat} : QEquiv {X} {Hom {SetBicat} terminal.apex X} name' unname' \cowith | ret_f _ => idp | f_sec _ => unfold (name', unname') $ ext (\lam a => unfold $ rewrite (terminal-obj-prop (to_terminal ()) a) idp) \func name-inj {X : SetBicat} {x y : X} (c : name' x = name' y) : x = y => Equiv.isInj {global-elements-iso} c \func name-f {X Y : SetBicat} (f : X -> Y) (x : X) : f SetBicat.∘ name' x = name' (f x) => inv $ Equiv.adjointInv {global-elements-iso} idp \func unname-adjoint {X : SetBicat} {f : X} {g : Hom {SetBicat} terminal.apex X} (eq : name' f = g) : f = unname' g => Equiv.adjoint {global-elements-iso {X}} eq \func bprod-ext {X Y : SetBicat} {f g : Product.apex {Bprod {SetBicat} X Y}} (eq1 : proj1 {SetBicat} f = proj1 {SetBicat} g) (eq2 : proj2 {SetBicat} f = proj2 {SetBicat} g) : f = g => name-inj (pair-unique {SetBicat} {X} {Y} {terminal.apex} (rewrite (name-f (proj1 {SetBicat}) f, name-f (proj1 {SetBicat}) g) $ pmap name' eq1) (rewrite (name-f (proj2 {SetBicat}) f, name-f (proj2 {SetBicat}) g) $ pmap name' eq2)) \func proj1-pair-applied {X Y Z : SetBicat} (f : Hom {SetBicat} Z X) (g : Hom {SetBicat} Z Y) (z : Z) : proj1 {SetBicat} (pair {SetBicat} f g z) = f z => \let s : proj1 {SetBicat} ∘ {SetBicat} pair {SetBicat} f g = f => rewrite (beta1 _ _) idp \in path (\lam i => (s @ i) z) \func proj1-prodMap-applied {X Y Z W : SetBicat} (f : X -> Z) (g : Y -> W) (p : Product.apex {Bprod {SetBicat} X Y}) : proj1 {SetBicat} (prodMap {SetBicat} f g p) = f (proj1 {SetBicat} p) => \let s : proj1 {SetBicat} ∘ {SetBicat} (prodMap {SetBicat} f g) = f ∘ {SetBicat} proj1 {SetBicat} => beta1 _ _ \in path (\lam i => (s @ i) p) \func proj2-pair-applied {X Y Z : SetBicat} (f : Hom {SetBicat} Z X) (g : Hom {SetBicat} Z Y) (z : Z) : proj2 {SetBicat} (pair {SetBicat} f g z) = g z => \let s : proj2 {SetBicat} ∘ {SetBicat} pair {SetBicat} f g = g => rewrite (beta2 _ _) idp \in path (\lam i => (s @ i) z) \func proj2-prodMap {X Y Z W : SetBicat} (f : X -> Z) (g : Y -> W) (p : Product.apex {Bprod {SetBicat} X Y}) : proj2 {SetBicat} (prodMap {SetBicat} f g p) = g (proj2 {SetBicat} p) => \let help : proj2 {SetBicat} ∘ {SetBicat} (prodMap {SetBicat} f g) = g ∘ {SetBicat} proj2 {SetBicat} => beta2 _ _ \in path (\lam i => (help @ i) p) \func proj1-unname-pair {A B : SetBicat} (a : A) (b : B) : proj1 {SetBicat} (unname' (pair {SetBicat} (name' a) (name' b))) = a => unfold unname' $ rewrite (proj1-pair-applied (name' a) (name' b) _) idp \func proj2-unname-pair {A B : SetBicat} (a : A) (b : B) : proj2 {SetBicat} (unname' (pair {SetBicat} (name' a) (name' b))) = b => unfold unname' $ rewrite (proj2-pair-applied (name' a) (name' b) _) idp }