\import Arith.Nat
\import Data.List
\import Data.Or
\import Logic
\import Logic.Meta
\import Paths
\import Paths.Meta
\import Set
\import Set.Fin
\func Index {A : \Type} (list : List A) : \Type => Fin (length list)
\cons fzero {n : Nat} : Fin (suc n) => 0
\cons fsuc {n : Nat} (x : Fin n) : Fin (suc n) => suc x
\func fpred {n : Nat} (def : Fin n) (x : Fin (suc n)) : Fin n \elim x
| 0 => def
| suc x => x
\lemma unfsuc {n : Nat} {x y : Fin n} (p : suc x = suc y) : x = y
=> pmap (fpred x) p
\lemma fsuc/= {n : Nat} {x y : Fin n} (p : x /= y) : fsuc x /= fsuc y
=> \lam q => p (unfsuc q)
\lemma nat_fin_= {n : Nat} {x y : Fin n} (p : x = {Nat} y) : x = y \elim n, x, y
| suc n, 0, 0 => idp
| suc n, 0, suc y => \case p
| suc n, suc x, 0 => \case p
| suc n, suc x, suc y => pmap fsuc (nat_fin_= (pmap pred p))
\lemma fin_nat_/= {n : Nat} {x y : Fin n} (p : x /= y) : (x : Nat) /= y
=> \lam q => p (nat_fin_= q)
\lemma fsuc_fpred {n : Nat} {x : Fin (suc n)} {d : Fin n} (p : x /= 0) : fsuc (fpred d x) = x \elim x
| 0 => absurd (p idp)
| suc x => idp
\func last-fin (n : Nat) : Fin (suc n) \elim n
| 0 => 0
| suc n => suc (last-fin n)
\func fin-eq-dec {n : Nat} (x y : Fin n) : Dec (x = y) \elim n, x, y
| suc n, 0, 0 => yes idp
| suc n, 0, suc y => no contradiction
| suc n, suc x, 0 => no contradiction
| suc n, suc x, suc y => \case fin-eq-dec x y \with {
| yes e => yes (pmap fsuc e)
| no n1 => no (\lam p => n1 (FinSet.suc-isInj x y p))
}
\func expand-fin-left {A : \Type} {a b : List A} (i : Index a) : Index (a ++ b) \elim a, i
| :: a _, 0 => 0
| :: _ _, suc i => suc (expand-fin-left i)
\where {
\func correct {A : \Type} {a b : List A} (i : Index a) : (a ++ b) !! expand-fin-left i = a !! i \elim a, i
| :: a a1, 0 => idp
| :: a a1, suc i => correct i
}
\func expand-fin-right {A : \Type} {a b : List A} (i : Index b) : Index (a ++ b) \elim a
| nil => i
| :: a a1 => suc (expand-fin-right i)
\where {
\func correct {A : \Type} {a b : List A} (i : Index b) : (a ++ b) !! expand-fin-right i = b !! i \elim a
| nil => idp
| :: a a1 => correct i
}
\func partial-fin-induction
{A : \Type} {a b : List A} (C : Index (a ++ b) -> \Type)
(proof-for-prefix : \Pi (i : Index a) -> C (expand-fin-left i))
(proof-for-suffix : \Pi (i : Index b) -> C (expand-fin-right i))
(index : Index (a ++ b)) : C index =>
\case fin-list-decide index \with {
| inl (i, p) => rewrite p (proof-for-prefix i)
| inr (j, p) => rewrite p (proof-for-suffix j)
}
\where {
\func fin-list-decide {A : \Type} {a b : List A} (index : Index (a ++ b)) :
(\Sigma (i : Index a) (index = expand-fin-left i)) `Or` (\Sigma (j : Index b) (index = expand-fin-right j))
\elim a, index
| nil, index => inr (index, idp)
| :: a a1, 0 => inl (0, idp)
| :: a a1, suc index => \case fin-list-decide index \with {
| inl (i, eq) => inl (suc i, pmap fsuc eq)
| inr (j, eq) => inr (j, pmap fsuc eq)
}
}
\func modular-function
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin (suc n))
(i : Fin n)
: C i
\elim n, delim, i
| suc n, 0, i => f i
| suc n, suc delim, 0 => g 0
| suc n, suc delim, suc i => modular-function (\lam i => f (suc i)) (\lam i => g (suc i)) delim i
\where {
\func pure-left-modular
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
: modular-function f g 0 = f => ext (unext f g)
\where {
\func unext
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(i : Fin n) : modular-function f g 0 i = f i \elim n, i
| suc n, i => idp
}
\func modular-bridge
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
(eq : f delim = g delim) : modular-function f g delim = modular-function f g (suc delim) =>
ext (unext f g delim eq)
\where {
\func unext
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
(eq : f delim = g delim)
(j : Fin n)
: modular-function f g delim j = modular-function f g (suc delim) j
\elim n, delim, j
| suc n, 0, 0 => eq
| suc n, 0, suc j => rewrite pure-left-modular.unext idp
| suc n, suc delim, 0 => idp
| suc n, suc delim, suc j => unext (\lam i => f (suc i)) (\lam i => g (suc i)) delim eq j
}
\func pure-right-modular
{n : Nat}
{C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i) : modular-function f g (last-fin n) = g => ext (unext C f g)
\where {
\func unext
{n : Nat}
(C : Fin n -> \Type)
(f g : \Pi (i : Fin n) -> C i)
(i : Fin n)
: modular-function f g (last-fin n) i = g i \elim n, i
| suc n, 0 => idp
| suc n, suc i => unext (\lam i => C (suc i)) (\lam i => f (suc i)) (\lam i => g (suc i)) i
}
}
\func modular-induction
{n : Nat} {C : Fin n -> \Type}
(Q : (\Pi (i : Fin n) -> C i) -> \Type)
(f g : \Pi (i : Fin n) -> C i)
(start : Q f)
(step : \Pi (delim : Fin n) (Q (modular-function f g delim)) -> Q (modular-function f g (suc delim)))
: Q g =>
transport Q (modular-function.pure-right-modular f g) (progressive-induction-lemma {n} Q f g step (last-fin n) start)
\where {
\func progressive-induction-lemma
{n : Nat} {C : Fin n -> \Type}
(Q : (\Pi (i : Fin n) -> C i) -> \Type)
(f g : \Pi (i : Fin n) -> C i)
(step : \Pi (delim : Fin n) (Q (modular-function f g delim)) -> Q (modular-function f g (suc delim)))
(delim : Fin (suc n))
(start : Q f)
: Q (modular-function f g delim) \elim n, delim
| 0, 0 => transportInv Q (modular-function.pure-left-modular f g) start
| suc n, 0 => start
| suc n, suc delim => step delim (progressive-induction-lemma {suc n} Q f g step delim start)
}
\func pointed-function {n : Nat} {C : Fin n -> \Type}
(f : \Pi (i : Fin n) -> C i)
(index : Fin n)
(point : C index)
(j : Fin n)
: C j \elim n, index, j
| suc n, 0, 0 => point
| suc n, 0, suc j => f (suc j)
| suc n, suc index, 0 => f 0
| suc n, suc index, suc j => pointed-function (\lam i => f (suc i)) index point j
\where {
\func at-index
{n : Nat} {C : Fin n -> \Type}
(f : \Pi (i : Fin n) -> C i)
(index : Fin n)
(point : C index)
: pointed-function f index point index = point \elim n, index
| suc n, 0 => idp
| suc n, suc index => at-index (\lam i => f (suc i)) index point
\func not-at-index
{n : Nat} {C : Fin n -> \Type}
(f : \Pi (i : Fin n) -> C i)
(index : Fin n)
(point : C index)
(j : Fin n)
(j-not-index : j = index -> Empty)
: pointed-function f index point j = f j \elim n, index, j
| suc n, 0, 0 => \have contra => j-not-index idp \in contradiction
| suc n, 0, suc j => idp
| suc n, suc index, 0 => idp
| suc n, suc index, suc j
=> not-at-index (\lam i => f (suc i)) index point j (\lam p => j-not-index (pmap fsuc p))
}
\func pointed-induction
{n : Nat} {C : Fin n -> \Type}
(Q : \Pi (i : Fin n) -> (C i) -> \Type)
(f : \Pi (i : Fin n) -> C i)
(index : Fin n)
(point : C index)
(eq1 : Q index point)
(eq2 : \Pi (j : Fin n) (Not (j = index)) -> Q j (f j))
(i : Fin n)
: Q i (pointed-function f index point i)
\elim n, index, i
| suc n, 0, 0 => eq1
| suc n, 0, suc i => eq2 (suc i) (\lam e => contradiction)
| suc n, suc index, 0 => eq2 0 (\lam e => contradiction)
| suc n, suc index, suc i =>
pointed-induction
(\lam i ci => Q (suc i) ci)
(\lam i => f (suc i)) index point eq1
(\lam j ne => eq2 (suc j)
(\lam p => ne (FinSet.suc-isInj _ _ p))) i
\func modular-to-pointed
{n : Nat} {C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
: modular-function f g delim = pointed-function (modular-function f g delim) delim (f delim) =>
ext (unext f g delim)
\where {
\func unext
{n : Nat} {C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
(i : Fin n)
: modular-function f g delim i = pointed-function (modular-function f g delim) delim (f delim) i
\elim n, delim, i
| suc n, 0, 0 => idp
| suc n, 0, suc i => idp
| suc n, suc delim, 0 => idp
| suc n, suc delim, suc i => unext (\lam i => f (suc i)) (\lam j => g (suc j)) delim i
}
\func modular-to-pointed-forward
{n : Nat} {C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
: modular-function f g (suc delim) = pointed-function (modular-function f g delim) delim (g delim) =>
ext (unext f g delim)
\where {
\func unext
{n : Nat} {C : Fin n -> \Type}
(f g : \Pi (i : Fin n) -> C i)
(delim : Fin n)
(i : Fin n)
: modular-function f g (suc delim) i = pointed-function (modular-function f g delim) delim (g delim) i
\elim n, delim, i
| suc n, 0, 0 => idp
| suc n, 0, suc i => rewrite modular-function.pure-left-modular.unext idp
| suc n, suc delim, 0 => idp
| suc n, suc delim, suc i => unext (\lam i => f (suc i)) (\lam j => g (suc j)) delim i
}