\import Algebra.Meta
\import Data.Bool
\import Data.Or
\import Homotopy.Fibration
\import Logic
\import Logic.Classical
\import Logic.FirstOrder.Term
\import Logic.Meta
\import Paths
\import Paths.Meta
\import Set.Fin
\class Signature \extends TermSig
| PredSymb : \Set
| predDomain : PredSymb -> Array Sort
\data Formula {S : Signature} (V : S -> \Set)
| equality {s : S} (Term V s) (Term V s)
| predicate (P : PredSymb) (DArray (\lam j => Term V (predDomain P j)))
\func substF {S : Signature} {U V : S -> \Set} (phi : Formula U) (rho : \Pi {s : S} -> U s -> Term V s) : Formula V \elim phi
| equality t1 t2 => equality (subst t1 rho) (subst t2 rho)
| predicate P ts => predicate P (\lam j => subst (ts j) rho)
\func Sequent {S : Signature} => \Sigma (V : S -> \Set) (FinSet (\Sigma (s : S) (V s))) (Array (Formula V)) (Formula V)
\class Theory \extends Signature {
| axioms : Sequent -> \Prop
\truncated \data isTheorem {V : Sort -> \Set} (phi : Array (Formula V)) (psi : Formula V) : \Prop \elim psi
| equality a b => refl (a = b)
| psi => {
| proj (j : Fin phi.len) (psi = phi j)
| substPres (U : Sort -> \Set) (chi : Formula U) (rho rho' : \Pi {s : Sort} -> U s -> Term V s)
(\Pi {s : Sort} (u : U s) -> isTheorem phi (equality (rho u) (rho' u)))
(isTheorem phi (substF chi rho))
(psi = substF chi rho')
| axiom (a : Sequent) (axioms a) (rho : \Pi {s : Sort} -> a.1 s -> Term V s)
(∀ (chi : a.3) (isTheorem phi (substF chi rho)))
(psi = substF a.4 rho)
}
\lemma congruence {V : Sort -> \Set} {phi : Array (Formula V)} {s : Sort} {f : Symb s} {l l' : DArray (\lam j => Term V (domain f j))}
(e : \Pi (j : Fin (DArray.len {domain f})) -> isTheorem phi (equality (l j) (l' j)))
: isTheorem phi (equality (apply f l) (apply f l'))
=> substPres (\lam s => Or (V s) (Given (s' : domain f) (s = s')))
(equality (subst (apply f l) (\lam v => var (inl v))) (apply f (\lam j => var (inr (j,idp)))))
(\case __ \with { | inl v => var v | inr (j,p) => rewrite p (l j) })
(\case __ \with { | inl v => var v | inr (j,p) => rewrite p (l' j) })
(\lam {s'} u => \case \elim s', \elim u \with {
| _, inl v => refl idp
| _, inr (j,idp) => e j
})
(transportInv (\lam x => isTheorem phi (equality (apply f x) (apply f l))) (exts (\lam j => subst-assoc (l j) _ _ *> subst_var (l j))) (refl idp))
(cong (exts (\lam j => inv (subst-assoc (l j) _ _ *> subst_var (l j)))))
\lemma congruenceF {V : Sort -> \Set} {phi : Array (Formula V)} {P : PredSymb} {l l' : DArray (\lam j => Term V (predDomain P j))}
(e : \Pi (j : Fin (DArray.len {predDomain P})) -> isTheorem phi (equality (l j) (l' j))) (th : isTheorem phi (predicate P l))
: isTheorem phi (predicate P l')
=> substPres (\lam s => Given (s' : predDomain P) (s = s')) (predicate P (\lam j => var (j,idp)))
(\lam q => rewrite q.2 (l q.1)) (\lam q => rewrite q.2 (l' q.1))
(\lam {s'} q => \case \elim s', \elim q \with { | _, (j,idp) => e j }) th idp
\lemma symmetry {V : Sort -> \Set} {phi : Array (Formula V)} {s : Sort} {t t' : Term V s} (p : isTheorem phi (equality t t')) : isTheorem phi (equality t' t)
=> substPres (\lam s' => \Sigma (s' = s) Bool) (equality (var (idp,true)) (var (idp,false))) (\lam q => rewrite q.1 t) (\lam q => rewrite q.1 (if q.2 t' t)) (\lam {s'} => \case \elim s', \elim __ \with {
| _, (idp,true) => p
| _, (idp,false) => refl idp
}) (refl idp) idp
\lemma transitivity {V : Sort -> \Set} {phi : Array (Formula V)} {s : Sort} {t1 t2 t3 : Term V s} (p1 : isTheorem phi (equality t1 t2)) (p2 : isTheorem phi (equality t2 t3)) : isTheorem phi (equality t1 t3)
=> substPres (\lam s' => \Sigma (s' = s) Bool) (equality (var (idp,true)) (var (idp,false))) (\lam q => rewrite q.1 (if q.2 t1 t2)) (\lam q => rewrite q.1 (if q.2 t1 t3)) (\lam {s'} => \case \elim s', \elim __ \with {
| _, (idp,true) => refl idp
| _, (idp,false) => p2
}) p1 idp
\truncated \data QTerm (s : Sort) : \Set
| qinj (Term (\lam _ => Empty) s)
| qapply (f : Symb s) (DArray (\lam j => QTerm (domain f j)))
| qquot {t t' : Term (\lam _ => Empty) s} (isTheorem nil (equality t t')) : qinj t = qinj t'
| qmerge {f : Symb s} (ds : DArray (\lam j => Term (\lam _ => Empty) (domain f j))) : qinj (apply f ds) = qapply f (\new DArray { | at j => qinj (ds j) })
\func qinj-surj {s : Sort} (q : QTerm s) : TruncP (Fib qinj q) \elim q
| qinj t => inP (t, idp)
| qapply f d => TruncP.map (choice (\lam j => qinj-surj (d j)))
(\lam g => (apply f (\lam j => (g j).1), path (qmerge _) *> pmap (\lam x => qapply f (\new DArray (\lam j => QTerm (domain f j)) x)) (ext (\lam j => (g j).2))))
\lemma qinj-equality {s : Sort} {t t' : Term (\lam _ => Empty) s} : (qinj t = qinj t') = isTheorem nil (equality t t')
=> propExt (transport (code t) __ (refl idp)) (\lam p => path (qquot p))
\where {
\func code {s : Sort} (t : Term (\lam _ => Empty) s) (q : QTerm s) : \Prop \elim q
| qinj t' => isTheorem nil (equality t t')
| qapply f d => \Pi (d' : DArray (\lam j => Term (\lam _ => Empty) (domain f j))) -> (\Pi (j : Fin (DArray.len {domain f})) -> code (d' j) (d j)) -> isTheorem nil (equality t (apply f d'))
| qquot {t1} {t2} p => ext (transitivity __ p, transitivity __ (symmetry p))
| qmerge {f} ds => ext (\lam t~fds ds' ds'~ds => transitivity t~fds (symmetry (congruence ds'~ds)), \lam g => g ds (\lam j => refl idp))
}
\truncated \data isPartialTheorem (seq : Sequent) : \Prop \with
| (_, _, _, equality (var v) (var v')) => varDef (v = v')
| (V, vf, phi, equality a b) => sym (isTheorem phi (equality b a))
| (V, vf, phi : Array, psi) => {
| partProj (j : Fin phi.len) (psi = phi j)
| partSubstPres {U : Sort -> \Set} (chi : Formula U) (rho rho' : \Pi {s : Sort} -> U s -> Term V s)
(\Pi {s : Sort} (u : U s) -> isTheorem phi (equality (rho u) (rho' u)))
(isTheorem phi (substF chi rho))
(psi = substF chi rho')
| predDef (P : PredSymb) (ts : DArray (\lam j => Term V (predDomain P j)))
(isTheorem phi (predicate P ts))
(Given (t : ts) (psi = equality t t))
| funcDef {s : Sort} (h : Symb s) (ts : DArray (\lam j => Term V (domain h j)))
(isTheorem phi (equality (apply h ts) (apply h ts)))
(Given (t : ts) (psi = equality t t))
| partAxiom (a : Sequent) (axioms a) (rho : \Pi {s : Sort} -> a.1 s -> Term V s)
(\Pi {s : Sort} (v : a.1 s) -> isTheorem phi (equality (rho v) (rho v)))
(∀ (chi : a.3) (isTheorem phi (substF chi rho)))
(psi = substF a.4 rho)
}
}
\class Structure (T : Signature) (\classifying E : Sort -> \Set) {
| operation {r : Sort} (h : Symb r) : DArray (\lam j => E (domain h j)) -> E r
| relation (P : PredSymb) : DArray (\lam j => E (predDomain P j)) -> \Prop
\func Env (V : Sort -> \Set) => \Pi {s : Sort} -> V s -> E s
\func interpret {V : Sort -> \Set} (rho : Env V) {s : Sort} (t : Term V s) : E s \elim t
| var v => rho v
| apply f d => operation f (\lam j => interpret rho (d j))
\lemma subst_interpret {U V : Sort -> \Set} {rho : Env V} {tau : \Pi {s : T} -> U s -> Term V s} {s : Sort} (t : Term U s)
: interpret rho (subst t tau) = interpret (\lam u => interpret rho (tau u)) t \elim t
| var v => idp
| apply f d => cong (ext (\lam j => subst_interpret (d j)))
\func isFormulaTrue {V : Sort -> \Set} (rho : Env V) (phi : Formula V) : \Prop \elim phi
| equality t t' => interpret rho t = interpret rho t'
| predicate P d => relation P (\lam j => interpret rho (d j))
\lemma subst_isFormulaTrue {U V : Sort -> \Set} {rho : Env V} {tau : \Pi {s : T} -> U s -> Term V s} {phi : Formula U}
: isFormulaTrue rho (substF phi tau) = isFormulaTrue (\lam u => interpret rho (tau u)) phi \elim phi
| equality t t' => pmap2 (=) (subst_interpret t) (subst_interpret t')
| predicate P d => cong (ext (\lam j => subst_interpret (d j)))
\func isSequentTrue (S : Sequent) =>
\Pi (rho : Env S.1) -> ∀ (phi : S.3) (isFormulaTrue rho phi) -> isFormulaTrue rho S.4
}
\class Model \extends Structure {
\override T : Theory
| isModel (S : Sequent) : axioms {T} S -> Structure.isSequentTrue S
\lemma theoremIsTrue {V : Sort -> \Set} {phis : Array (Formula V)} {psi : Formula V} (t : isTheorem phis psi) (rho : Env V) (c : ∀ (phi : phis) (isFormulaTrue rho phi)) : isFormulaTrue rho psi \elim psi, t
| equality a _, refl idp => idp
| psi, proj j p => rewrite p (c j)
| _, substPres U chi tau1 tau2 tauE t idp => propExt.conv subst_isFormulaTrue (transport (\lam (rho : Env U) => isFormulaTrue rho chi) (ext (\lam u => theoremIsTrue (tauE u) rho c)) (propExt.dir subst_isFormulaTrue (theoremIsTrue t rho c)))
| _, axiom S a tau t idp => propExt.conv subst_isFormulaTrue (isModel S a _ (\lam j => propExt.dir subst_isFormulaTrue (theoremIsTrue (t j) rho c)))
\func qinterpret {s : Sort} (t : QTerm s) : E s \elim t
| qinj t => interpret (\lam {_} => absurd) t
| qapply f d => operation f (\lam j => qinterpret (d j))
| qquot p => theoremIsTrue p (\lam {_} => absurd) (\case __)
| qmerge {f} ds _ => operation f (\new DArray _ (\lam j => interpret (\lam {_} => absurd) (ds j)))
} \where \open Theory