\import Data.Array
\import Data.Or
\import Function.Meta ($)
\import Logic
\import Logic.Meta
\import Meta
\import Order.Lattice
\import Order.PartialOrder
\import Order.StrictOrder
\import Paths
\import Paths.Meta
\import Set
\open JoinSemilattice
\open MeetSemilattice
\class TotalOrder \extends DistributiveLattice {
| totality (x y : E) : x <= y || y <= x
\default meet (x y : E) : E => (tmeet (totality x y)).1
\default meet-left {x y : E} : meet x y <= x => (tmeet (totality x y)).2
\default meet-right {x y : E} : meet x y <= y => (tmeet (totality x y)).3
\default meet-univ {x y z : E} : z <= x -> z <= y -> z <= meet x y => (tmeet (totality x y)).4 z
\default join (x y : E) : E => (tjoin (totality x y)).1
\default join-left {x y : E} : x <= join x y => (tjoin (totality x y)).2
\default join-right {x y : E} : y <= join x y => (tjoin (totality x y)).3
\default join-univ {x y z : E} : x <= z -> y <= z -> join x y <= z => (tjoin (totality x y)).4 z
| ldistr>= {x} {y} {z} =>
\case totality y z \with {
| byLeft y<=z => meet-monotone <=-refl (join-univ y<=z <=-refl) <=∘ join-right
| byRight z<=y => meet-monotone <=-refl (join-univ <=-refl z<=y) <=∘ join-left
}
\lemma meet-isMin (x y : E) : (x ∧ y = x) || (x ∧ y = y)
=> \case totality x y \with {
| byLeft x<=y => byLeft (<=-antisymmetric Lattice.meet-left (Lattice.meet-univ <=-refl x<=y))
| byRight y<=x => byRight (<=-antisymmetric Lattice.meet-right (Lattice.meet-univ y<=x <=-refl))
}
\lemma meet-prop (P : E -> \Prop) {x y : E} (Px : P x) (Py : P y) : P (x ∧ y)
=> \case meet-isMin x y \with {
| byLeft p => transportInv P p Px
| byRight p => transportInv P p Py
}
\lemma Big01_meet-isMin (l : Array E) (x : E) : (\Sigma (j : Fin l.len) (Big (∧) x l = l j)) || (Big (∧) x l = x) \elim l
| nil => byRight idp
| a :: l => \case meet-isMin a (Big (∧) x l), Big01_meet-isMin l x \with {
| byLeft r, _ => byLeft (0, r)
| byRight r, byLeft q => byLeft (suc q.1, r *> q.2)
| byRight r, byRight q => byRight (r *> q)
}
\lemma Big_meet-isMin {n : Nat} (l : Array E (suc n)) : ∃ (j : Fin (suc n)) (Big_∧ l = l j) \elim l
| a :: l => \case Big01_meet-isMin l a \with {
| byLeft r => inP (suc r.1, r.2)
| byRight r => inP (0, r)
}
\lemma join-isMax (x y : E) : (x ∨ y = x) || (x ∨ y = y)
=> \case totality x y \with {
| byLeft x<=y => byRight (<=-antisymmetric (Lattice.join-univ x<=y <=-refl) Lattice.join-right)
| byRight y<=x => byLeft (<=-antisymmetric (Lattice.join-univ <=-refl y<=x) Lattice.join-left)
}
\lemma join-prop (P : E -> \Prop) {x y : E} (Px : P x) (Py : P y) : P (x ∨ y)
=> \case join-isMax x y \with {
| byLeft p => transportInv P p Px
| byRight p => transportInv P p Py
}
\lemma Big01_join-isMax (l : Array E) (x : E) : (\Sigma (j : Fin l.len) (Big (∨) x l = l j)) || (Big (∨) x l = x) \elim l
| nil => byRight idp
| a :: l => \case join-isMax a (Big (∨) x l), Big01_join-isMax l x \with {
| byLeft r, _ => byLeft (0, r)
| byRight r, byLeft q => byLeft (suc q.1, r *> q.2)
| byRight r, byRight q => byRight (r *> q)
}
\lemma Big_join-isMax {n : Nat} (l : Array E (suc n)) : ∃ (j : Fin (suc n)) (Big_∨ l = l j) \elim l
| a :: l => \case Big01_join-isMax l a \with {
| byLeft r => inP (suc r.1, r.2)
| byRight r => inP (0, r)
}
} \where {
\func tmeet {E : Poset} {x y : E} => ||.rec MeetSemilattice.Meets-isProp
(\lam x<=y => (x, E.<=-refl, x<=y, \lam z z<=x _ => z<=x))
(\lam y<=x => (y, y<=x, E.<=-refl, \lam z _ z<=y => z<=y))
\func tjoin {E : Poset} {x y : E} => ||.rec JoinSemilattice.Joins-isProp
(\lam x<=y => (y, x<=y, E.<=-refl, \lam z _ y<=z => y<=z))
(\lam y<=x => (x, E.<=-refl, y<=x, \lam z z<=x _ => z<=x))
}
\class BiorderedSet \extends StrictPoset, Poset {
| <-transitive-right \alias \infixr 9 <∘r {a1 a2 a3 : E} : a1 <= a2 -> a2 < a3 -> a1 < a3
| <-transitive-left \alias \infixl 8 <∘l {a1 a2 a3 : E} : a1 < a2 -> a2 <= a3 -> a1 < a3
| <=-less {a1 a2 : E} : a1 < a2 -> a1 <= a2
\func op : BiorderedSet \cowith
| StrictPoset => StrictPoset.op
| Poset => Poset.op
| <-transitive-right p q => q <∘l p
| <-transitive-left p q => q <∘r p
| <=-less => <=-less
}
-- | A linearly ordered set.
\class LinearOrder \extends BiorderedSet {
| <-comparison (y : E) {x z : E} : x < z -> x < y || y < z
| <-connectedness {x y : E} : Not (x < y) -> Not (y < x) -> x = y
| <= => <=
| <=-refl => <-irreflexive
| <=-transitive {x} {y} {z} x<=y y<=z => \case <-comparison y __ \with {
| byLeft z<y => y<=z z<y
| byRight y<x => x<=y y<x
}
| <=-antisymmetric x<=y y<=x => <-connectedness y<=x x<=y
| <-transitive-right {a1} {a2} {a3} a2/<a1 a2<a3 => \case <-comparison a1 a2<a3 \with {
| byLeft a2<a1 => absurd (a2/<a1 a2<a1)
| byRight a1<a3 => a1<a3
}
| <-transitive-left {a1} {a2} {a3} a1<a2 a3/<a2 => \case <-comparison a3 a1<a2 \with {
| byLeft a1<a3 => a1<a3
| byRight a3<a2 => absurd (a3/<a2 a3<a2)
}
| <=-less p => \lam q => <-irreflexive (p <∘ q)
\func op : LinearOrder \cowith
| StrictPoset => StrictPoset.op
| <-comparison y x<z => \case <-comparison y x<z \with {
| byLeft z<y => byRight z<y
| byRight y<x => byLeft y<x
}
| <-connectedness p q => <-connectedness q p
} \where {
\class With# \extends LinearOrder, Set#
| # x y => x < y || y < x
| #-irreflexive x#x => \case x#x \with {
| byLeft x<x => <-irreflexive x<x
| byRight x<x => <-irreflexive x<x
}
| #-symmetric x#y => \case x#y \with {
| byLeft x<y => byRight x<y
| byRight y<x => byLeft y<x
}
| #-comparison x y z x#z => \case x#z \with {
| byLeft x<z => \case <-comparison y x<z \with {
| byLeft x<y => byLeft (byLeft x<y)
| byRight y<z => byRight (byLeft y<z)
}
| byRight z<x => \case <-comparison y z<x \with {
| byLeft z<y => byRight (byRight z<y)
| byRight y<x => byLeft (byRight y<x)
}
}
| tightness x/#y => <-connectedness (\lam x<y => x/#y (byLeft x<y)) (\lam y<x => x/#y (byRight y<x))
\type \infix 4 <= {A : StrictPoset} (a a' : A) => Not (a' < a)
\lemma <_<= {A : StrictPoset} {a a' : A} (p : a < a') : a <= a'
=> \lam q => <-irreflexive (p <∘ q)
\lemma notLess {A : StrictPoset} {a a' : A} (p : a <= a') (q : a' < a) : Empty
=> p q
-- | A linearly ordered set with decidable inequality.
\class Dec \extends LinearOrder, DecSet, TotalOrder {
\field trichotomy (x y : E) : Tri x y
| <-comparison y {x} {z} x<z => \case trichotomy x y \with {
| less x<y => byLeft x<y
| equals x=y => byRight (transport (`< z) x=y x<z)
| greater y<x => byRight (y<x <∘ x<z)
}
| <-connectedness {x} {y} x/<y y/<x => \case trichotomy x y \with {
| less x<y => absurd (x/<y x<y)
| equals x=y => x=y
| greater y<x => absurd (y/<x y<x)
}
| totality x y => \case trichotomy x y \with {
| less x<y => byLeft (<=-less x<y)
| equals x=y => byLeft (rewrite x=y <-irreflexive)
| greater y<x => byRight (<=-less y<x)
}
\default meet (x y : E) : E
=> \case trichotomy x y \with {
| less _ => x
| equals _ => x
| greater _ => y
}
\default meet-left {x y : E} : meet x y <= x
=> unfold meet (mcases <=-refl \with {
| greater y<x => <=-less y<x
})
\default meet-right {x y : E} : meet x y <= y
=> unfold meet (mcases \with {
| less x<y => <=-less x<y
| equals x=y => rewrite x=y <=-refl
| greater _ => <=-refl
})
\default meet-univ {x y z : E} : z <= x -> z <= y -> z <= meet x y
=> \lam z<=x z<=y => unfold meet (mcases z<=x \with {
| greater _ => z<=y
})
\default join (x y : E) : E
=> \case trichotomy x y \with {
| less _ => y
| equals _ => x
| greater _ => x
}
\default join-left {x y : E} : x <= join x y
=> unfold join (mcases <=-refl \with {
| less x<y => <=-less x<y
})
\default join-right {x y : E} : y <= join x y
=> unfold join (mcases \with {
| less _x => <=-refl
| equals x=y => rewrite x=y <=-refl
| greater y<x => <=-less y<x
})
\default join-univ {x y z : E} : x <= z -> y <= z -> join x y <= z
=> \lam x<=z y<=z => unfold join (mcases x<=z \with {
| less _ => y<=z
})
\default decideEq x y => \case trichotomy x y \with {
| less x<y => no (\lam x=y => <-irreflexive (transport (`< y) x=y x<y))
| equals x=y => yes x=y
| greater y<x => no (\lam x=y => <-irreflexive (transport (y <) x=y y<x))
}
\func op : Dec \cowith
| LinearOrder => LinearOrder.op
| decideEq => decideEq
| trichotomy x y => \case trichotomy x y \with {
| less y<x => greater y<x
| equals x=y => equals x=y
| greater x<y => less x<y
}
}
\func <-dec {A : Dec} (a a' : A) : Decide (a < a') \cowith
| decide => \case dec<_<= a a' \with {
| inl a<a' => yes a<a'
| inr a'<=a => no a'<=a
}
\lemma <=_/= {A : Dec} {a a' : A} (p : a <= a') (q : a /= a') : a < a'
=> \case trichotomy a a' \with {
| less r => r
| equals r => absurd (q r)
| greater r => absurd (p r)
}
\func <=-dec {A : Dec} {a a' : A} (p : a <= a') : (a < a') `Or` (a = a') => \case trichotomy a a' \with {
| less a<a' => inl a<a'
| equals a=a' => inr a=a'
| greater a'<a => absurd (p a'<a)
}
\func dec<_<= {A : Dec} (a a' : A) : (a < a') `Or` (a' <= a) => \case trichotomy a a' \with {
| less a<a' => inl a<a'
| equals a=a' => inr (rewrite a=a' <-irreflexive)
| greater a'<a => inr (<=-less a'<a)
}
\lemma dec<_reduce {A : Dec} {a a' : A} (p : a < a') : dec<_<= a a' = inl p
=> unfold dec<_<= (mcases contradiction \with {
| less a<a' => pmap inl prop-pi
})
\lemma dec<=_reduce {A : Dec} {a a' : A} (p : a' <= a) : dec<_<= a a' = inr p
=> unfold dec<_<= (mcases (pmap inr prop-pi) \with {
| less a<a' => contradiction
})
\lemma dec<= {A : Dec} (a a' : A) : Set.Dec (a <= a')
=> \case dec<_<= a' a \with {
| inl q => no \lam p => <-irreflexive (q <∘l p)
| inr q => yes q
}
\lemma trichotomy<_reduce {A : Dec} {a a' : A} (p : a < a') : trichotomy a a' = less p
=> cases (trichotomy a a') contradiction \with {
| less q => pmap less prop-pi
}
\lemma trichotomy=_reduce {A : Dec} {a a' : A} (p : a = a') : trichotomy a a' = equals p
=> cases (trichotomy a a') contradiction \with {
| equals q => pmap equals prop-pi
}
\lemma trichotomy>_reduce {A : Dec} {a a' : A} (p : a' < a) : trichotomy a a' = greater p
=> cases (trichotomy a a') contradiction \with {
| greater q => pmap greater prop-pi
}
\lemma meet/=left {A : LinearOrder} {_ : MeetSemilattice A (<=)} {a b : A} (p : a ∧ b /= a) : a ∧ b = b
=> <=-antisymmetric meet-right $ meet-univ (\lam a<b => p $ <=-antisymmetric meet-left $ meet-univ <=-refl $ <_<= a<b) <=-refl
\lemma meet/=right {A : LinearOrder} {_ : MeetSemilattice A (<=)} {a b : A} (p : a ∧ b /= b) : a ∧ b = a
=> rewrite meet-comm $ meet/=left $ later $ rewrite meet-comm p
\lemma <_meet-univ {A : LinearOrder} {_ : MeetSemilattice A (<=)} {x y z : A} (x<y : x < y) (x<z : x < z) : x < y ∧ z
=> \case <-comparison (y ∧ z) x<y \with {
| byLeft q => q
| byRight q => rewrite (meet/=left $ <_/= q) x<z
}
\lemma <_meet-monotone {A : Dec} {x x' y y' : A} (p : x < y) (q : x' < y') : x ∧ x' < y ∧ y'
=> <_meet-univ (meet-left <∘r p) (meet-right <∘r q)
\lemma Big_<_meet-univ {A : Dec} {l : Array A} {x y : A} (p : y < x) (f : \Pi (i : Fin l.len) -> y < l i) : y < Big (∧) x l \elim l
| nil => p
| :: a l => <_meet-univ (f 0) (Big_<_meet-univ p (\lam i => f (suc i)))
\lemma join/=left {A : LinearOrder} {_ : JoinSemilattice A (<=)} {a b : A} (p : a /= a ∨ b) : a ∨ b = b
=> <=-antisymmetric (join-univ (\lam b<a => p $ <=-antisymmetric join-left (join-univ <=-refl $ <_<= b<a)) <=-refl) join-right
\lemma join/=right {A : LinearOrder} {_ : JoinSemilattice A (<=)} {a b : A} (p : b /= a ∨ b) : a ∨ b = a
=> rewrite join-comm $ join/=left $ later $ rewrite join-comm p
\lemma <_join-univ {A : LinearOrder} {_ : JoinSemilattice A (<=)} {x y z : A} (x<z : x < z) (y<z : y < z) : x ∨ y < z
=> \case <-comparison (x ∨ y) x<z \with {
| byLeft q => rewrite (join/=left $ <_/= q) y<z
| byRight q => q
}
\lemma <_join-monotone {A : Dec} {x x' y y' : A} (p : x < y) (q : x' < y') : x ∨ x' < y ∨ y'
=> <_join-univ (p <∘l join-left) (q <∘l join-right)
\lemma Big_<_join-univ {A : Dec} {l : Array A} {x y : A} (p : x < y) (f : \Pi (i : Fin l.len) -> l i < y) : Big (∨) x l < y \elim l
| nil => p
| :: a l => <_join-univ (f 0) (Big_<_join-univ p (\lam i => f (suc i)))
\func findMin {A : Dec} {n : Nat} (l : Array A (suc n)) : \Sigma (j : Fin (suc n)) (Big_∧ l = l j) \elim n, l
| 0, a :: l => (0, idp)
| suc n, a :: a' :: l => \case dec<_<= a' (Big (∧) a l) \with {
| inl r => (1, <=-antisymmetric meet-left $ meet-univ <=-refl $ <_<= r)
| inr r => \case findMin (a :: l) \with {
| (0, p) => (0, rewrite p $ <=-antisymmetric meet-right $ meet-univ (rewrite p in r) <=-refl)
| (suc j, p) => (suc (suc j), rewrite p $ <=-antisymmetric meet-right $ meet-univ (rewrite p in r) <=-refl)
}
}
\func findMax {A : Dec} {n : Nat} (l : Array A (suc n)) : \Sigma (j : Fin (suc n)) (Big_∨ l = l j) \elim n, l
| 0, a :: l => (0, idp)
| suc n, a :: a' :: l => \case dec<_<= a' (Big (∨) a l) \with {
| inl r => \case findMax (a :: l) \with {
| (0, p) => (0, rewrite p $ <=-antisymmetric (join-univ (<_<= $ rewrite p in r) <=-refl) join-right)
| (suc j, p) => (suc (suc j), rewrite p $ <=-antisymmetric (join-univ (<_<= $ rewrite p in r) <=-refl) join-right)
}
| inr r => (1, <=-antisymmetric (join-univ <=-refl r) join-left)
}
}
\class DenseLinearOrder \extends LinearOrder
| isDense {x z : E} : x < z -> ∃ (y : E) (x < y) (y < z)
\where {
\class Dec \extends DenseLinearOrder, LinearOrder.Dec
}
\class UnboundedDenseLinearOrder \extends DenseLinearOrder
| withoutUpperBound (x : E) : ∃ (y : E) (x < y)
| withoutLowerBound (x : E) : ∃ (y : E) (y < x)
\where {
\class Dec \extends UnboundedDenseLinearOrder, DenseLinearOrder.Dec
}
\data Tri {A : StrictPoset} (a a' : A)
| less (a < a')
| equals (a = a')
| greater (a > a')
\where
\use \level levelProp : \Prop