\import Logic
\import Logic.Meta
\import Order.Lattice
\import Order.PartialOrder
\import Paths.Meta
\import Set.Subset
\record Filter (A : Bounded.MeetSemilattice) (\coerce F : A -> \Prop)
| filter-mono {a b : A} : a <= b -> F a -> F b
| filter-top : F Bounded.top
| filter-meet {a b : A} : F a -> F b -> F (a ∧ b)
\record CompleteFilter \extends Filter {
\override A : CompleteLattice
| filter-Join {J : \Set} {f : J -> A} : F (Join f) -> ∃ (j : J) (F (f j))
\lemma isProper (p : F CompleteLattice.bottom) : Empty
=> \case filter-Join {_} {Empty} {absurd} (filter-mono CompleteLattice.bottom-univ p) \with {
| inP (e,_) => e
}
}
\record SetFilter (X : \Set) \extends Filter
| A => SetLattice X
\func SetFilter-map {X Y : \Set} (f : X -> Y) (F : SetFilter X) : SetFilter Y \cowith
| F V => F (f ^-1 V)
| filter-mono p d => filter-mono (p __) d
| filter-top => filter-top
| filter-meet => filter-meet
\record ProperFilter \extends SetFilter
| isProper {U : Set X} : F U -> ∃ U
\func pointFilter {X : \Set} (x : X) : ProperFilter X \cowith
| F U => U x
| filter-mono p => p
| filter-top => ()
| filter-meet p q => (p,q)
| isProper Ux => inP (x,Ux)
\func ProperFilter-map {X Y : \Set} (f : X -> Y) (F : ProperFilter X) : ProperFilter Y \cowith
| SetFilter => SetFilter-map f F
| isProper d => TruncP.map (isProper d) \lam s => (f s.1, s.2)
\instance ProperFilterSemilattice (X : \Set) : MeetSemilattice (ProperFilter X)
| <= F G => F ⊆ G
| <=-refl c => c
| <=-transitive f g c => g (f c)
| <=-antisymmetric f g => exts \lam U => ext (f,g)
| meet F G => \new ProperFilter {
| F U => \Sigma (F U) (G U)
| filter-mono p s => (filter-mono p s.1, filter-mono p s.2)
| filter-top => (filter-top, filter-top)
| filter-meet s t => (filter-meet s.1 t.1, filter-meet s.2 t.2)
| isProper s => isProper s.1
}
| meet-left s => s.1
| meet-right s => s.2
| meet-univ f g c => (f c, g c)