\import Arith.Nat \import Arith.Real \import Data.Or \import Equiv \import Function \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Order.Lattice \import Order.PartialOrder \import Paths \import Paths.Meta \import Set \import Set.Fin \import Set.Subset \import Topology.CoverSpace \import Topology.CoverSpace.Complete \import Topology.MetricSpace \import Topology.UniformSpace \open ClosurePrecoverSpace \open Bounded(top,top-univ) \func IsTotallyBounded (X : CoverSpace) : \Prop => Cond X.isCauchy isCauchy \where { \protected \func Cond {X : CoverSpace} (P Q : Set (Set (Set X))) => ∀ {C : P} ∃ (U : Array (Set X)) (Q \lam V => ∃ (W : U) (W = V)) (∀ (V : U) (C V)) \lemma cond-char {X : CoverSpace} (Q : Set (Set (Set X))) (C : Set (Set X)) : ∃ (U : Array (Set X)) (Q \lam V => ∃ (W : U) (W = V)) (∀ (V : U) (C V)) <-> ∃ (D : Q) (n : Nat) (f : Fin n -> Set.Total D) (isSurj f) (D ⊆ C) => (\case \elim __ \with { | inP (U : Array, QU, h) => inP (\lam V => ∃ (W : U) (W = V), QU, U.len, \lam j => (U j, inP (j,idp)), \lam (_, inP (j,idp)) => inP (j,idp), \lam {V} (inP (j,p)) => rewriteI p (h j)) }, \case \elim __ \with { | inP (D, QD, n, g, gs, D<=C) => inP (\lam j => (g j).1, transport Q (later $ <=-antisymmetric (\lam {V} DV => \case gs (V,DV) \with { | inP (j,p) => inP (j, pmap __.1 p) }) (\lam {_} (inP (j,idp)) => (g j).2)) QD, \lam j => D<=C (g j).2) }) } \func IsCompact (X : CompleteCoverSpace) : \Prop => IsTotallyBounded X \func IsTotallyBoundedSet {X : CoverSpace} (U : Set X) : \Prop => IsTotallyBounded $ CoverTransfer {\Sigma (x : X) (U x)} __.1 \lemma totallyBoundedSet-char {X : CoverSpace} {U : Set X} : IsTotallyBoundedSet U <-> ∀ {C : isCauchy} ∃ (D : Array (Set X)) (isCauchy \lam W => ∃ (V : D) (U ∧ W ⊆ V)) (∀ (V : D) (C V)) => (\lam f Cc => \case f $ func-cover {PrecoverTransfer-map {Set.Total U} __.1} Cc \with { | inP (D,Dc,Dp) => \case FinSet.finiteAC Dp \with { | inP g => inP (\lam j => (g j).1, cauchy-subset Dc \lam {V} (inP (_, inP (j,idp), q)) => inP $ later (j, \lam {x} (Ux,Vx) => transport (_ ⊆) (g j).3 q {x,Ux} Vx), \lam j => (g j).2) } }, \lam f Cc => \case f Cc \with { | inP (D,Dc,Dp) => \case FinSet.finiteAC Dp \with { | inP g => inP (\lam j => (g j).1, cauchy-subset Dc \lam {V} (inP (j,q)) => inP $ later (_, inP (j,idp), (\lam {x} Vx => q (x.2,Vx)) <=∘ (g j).3), \lam j => (g j).2) } }) \lemma totallyBoundedSet-uniform-char {X : UniformSpace} {S : Set X} : IsTotallyBoundedSet S <-> ∀ {C : isUniform} ∃ (D : Array (Set X)) (isCauchy \lam W => ∃ (V : D) (S ∧ W ⊆ V)) (∀ (V : D) (C V)) => <->trans totallyBoundedSet-char $ later (\lam f Cu => f (X.makeCauchy Cu), \lam f {C} Cc => \case totallyBounded-uniform-char.totallyBounded-closure {UniformTransfer {Set.Total S} __.1} (\lam Cu => \case f Cu \with { | inP (V,Vc,Vh) => \case FinSet.finiteAC Vh \with { | inP h => inP (\lam j => (h j).1, cauchy-subset Vc \lam {W} (inP (j,p)) => inP $ later (_, inP (j,idp), (\lam {x} Wx => p (x.2, Wx)) <=∘ (h j).3), \lam j => (h j).2) } }) {\lam U => ∃ (V : C) (U = Set.restrict V)} (uniform-cauchy.1 $ later $ cauchy-subset Cc \lam {V} CV => inP $ later (_, inP (V, CV, idp), <=-refl)) \with { | inP (D,Dc,h) => \case FinSet.finiteAC h \with { | inP g => inP (\lam j => (g j).1, cauchy-subset Dc \lam {W} (inP (_, inP (j,idp), p)) => inP $ later (j, \lam {x} (Sx,Wx) => transport (__ (x,Sx)) (g j).3 $ p Wx), \lam j => (g j).2) } }) \lemma totallyBounded-cauchy-uniform {X : UniformSpace} (Xp : X.IsProperUniform) (Xtb : IsTotallyBounded X) {C : Set (Set X)} (Cc : isCauchy C) : isUniform C => \case Xtb $ X.<=*-cauchy-regular Cc \with { | inP (D,Dc,f) => \case FinSet.finiteAC f \with { | inP g => \case FinSet.finiteAC (\lam j => (g j).3) \with { | inP h => uniform-refine (Xp $ X.uniform-inter-big (\lam j => (h j).1) (\lam j => (h j).2)) \lam {W'} (EW', inP (x,W'x)) => \case cauchy-cover Dc x \with { | inP (_, inP (j,idp), Dx) => inP ((g j).1, (g j).2, \case Refines-inter-big (\lam j => (h j).1) j EW' \with { | inP (W,hW,W'<=W) => W'<=W <=∘ Set.Union-cond (later (hW, (x, (Dx, W'<=W W'x)))) <=∘ (h j).3 }) } } } } \lemma totallyBounded-cauchy-uniform-strong {X : StronglyRegularUniformSpace} (Xp : X.IsWeaklyProperUniform) (Xtb : IsTotallyBounded X) {C : Set (Set X)} (Cc : isCauchy C) : isUniform C => \case Xtb $ X.s<=*-cauchy-regular Cc \with { | inP (V,Vc,g) => \case FinSet.finiteAC g \with { | inP h => Xp $ uniform-refine (X.uniform-inter-big (\lam j W => (W = Compl (V j)) || (W = (h j).1)) (\lam j => (h j).3)) \lam {W} c => \case rewrite CoverInterBig-char in c \with { | inP (Ws,We,W=Ws) => \case FinSet.searchFin (\lam j => \Sigma (p : Ws j = (h j).1) (We j = byRight p)) (\lam j => cases (We j) \with { | byLeft _ => no \lam q => \case q.2 | byRight p => yes (p,idp) }) \with { | inl (j,(p,_),_) => inP ((h j).1, byRight (h j).2, rewrite (W=Ws, inv p) $ Bounded.MeetSemilattice.BigMeet-cond {_} {Ws} j) | inr f => inP (_, byLeft idp, \lam {x} Wx => \case cauchy-cover Vc x \with { | inP (_, inP (j,idp), Vjx) => \case f j (cases (We j) \with { | byLeft q => \case (rewrite q in Bounded.MeetSemilattice.BigMeet-cond {_} {Ws} j (rewrite W=Ws in Wx)) Vjx | byRight p => (p,idp) }) }) } } } } \lemma totallyBounded-uniform-char {X : UniformSpace} (Xp : X.IsProperUniform) : TFAE ( IsTotallyBounded X, IsTotallyBounded.Cond X.isUniform isUniform, IsTotallyBounded.Cond X.isUniform isCauchy ) => TFAE.cycle ( \lam tb => transport (\lam P => IsTotallyBounded.Cond P P) (exts \lam C => ext (totallyBounded-cauchy-uniform Xp tb, X.makeCauchy)) tb, \lam c Cu => \case c Cu \with { | inP (U,Uu,h) => inP (U, X.makeCauchy Uu, h) }, \lam c Cc => totallyBounded-closure c (uniform-cauchy.1 Cc) ) \where { \lemma totallyBounded-closure {X : UniformSpace} (base : IsTotallyBounded.Cond X.isUniform isCauchy) {C : Set (Set X)} (Cc : Closure isUniform C) : ∃ (D : Array (Set X)) (isCauchy \lam V => ∃ (W : D) (W = V)) (∀ (V : D) (C V)) \elim Cc | closure Cu => base Cu | closure-top idp => inP (top :: nil, top-cauchy $ inP $ later (0,idp), \lam (0) => idp) | closure-refine Dc D<C => \case totallyBounded-closure base Dc \with { | inP (U,Uc,DU) => \case FinSet.finiteAC (\lam j => D<C (DU j)) \with { | inP V => inP (\lam j => (V j).1, cauchy-refine Uc \lam {_} (inP (j,idp)) => inP ((V j).1, inP (j,idp), (V j).3), \lam j => (V j).2) } } | closure-trans {D} Dc {E} Ec idp => (IsTotallyBounded.cond-char isCauchy C).2 \case (IsTotallyBounded.cond-char isCauchy D).1 $ totallyBounded-closure base Dc \with { | inP (D', D'c, n, V, Vs, D'<=D) => \case FinSet.finiteAC (\lam i => (IsTotallyBounded.cond-char isCauchy (E (V i).1)).1 $ totallyBounded-closure base $ Ec $ D'<=D (V i).2) \with { | inP E' => \have e : Equiv => SigmaFin.aux {_} {\lam i => (E' i).3} \in inP ( \lam U => ∃ (i : Fin n) (j : Fin (E' i).3) ((V i).1 ∧ ((E' i).4 j).1 = U), cauchy-subset (cauchy-glue D'c {\lam V' W' => ∃ (i : Fin n) ((V i).1 = V') ((E' i).1 W')} \lam {V'} D'V' => \case Vs (V',D'V') \with { | inP (i,p) => cauchy-subset (E' i).2 \lam {W'} E'W' => inP $ later (i, pmap __.1 p, E'W') }) \lam {_} (inP (V', W', D'V', inP (i,p,E'W'), idp)) => \case (E' i).5 (W',E'W') \with { | inP (j,q) => inP $ later (i, j, pmap2 (∧) p $ pmap __.1 q) }, NatSemiring.BigSum \lam i => (E' i).3, \lam k => (_, inP ((e k).1, (e k).2, idp)), \lam (U, inP (i,j,p)) => inP (e.ret (i,j), ext $ pmap (\lam x => (V x.1).1 ∧ ((E' x.1).4 x.2).1) (e.f_ret (i,j)) *> p), \lam {U} (inP (i,j,p)) => inP (_, _, D'<=D (V i).2, (E' i).6 ((E' i).4 j).2, inv p)) } } } \lemma totallyBounded-uniform-strong-char {X : StronglyRegularUniformSpace} (Xp : X.IsWeaklyProperUniform) : TFAE ( IsTotallyBounded X, IsTotallyBounded.Cond X.isUniform isUniform, IsTotallyBounded.Cond X.isUniform isCauchy ) => TFAE.cycle ( \lam tb => transport (\lam P => IsTotallyBounded.Cond P P) (exts \lam C => ext (totallyBounded-cauchy-uniform-strong Xp tb, X.makeCauchy)) tb, \lam c Cu => \case c Cu \with { | inP (U,Uu,h) => inP (U, X.makeCauchy Uu, h) }, \lam c Cc => totallyBounded-uniform-char.totallyBounded-closure c (uniform-cauchy.1 Cc) ) \func IsLocallyUniform {X : UniformSpace} (C : Set (Set X)) (E : Set (Set X)) : \Prop => ∀ {U : C} (isUniform \lam V => ∃ (W : E) (U ∧ V ⊆ W)) \func IsLocallyUniformSpace (X : UniformSpace) : \Prop => ∃ (C : X.isUniform) ∀ {E : X.isCauchy} (IsLocallyUniform C E) \lemma locallyUniform-cauchy {X : UniformSpace} {C : Set (Set X)} (Cc : isCauchy C) (E : Set (Set X)) (lu : IsLocallyUniform C E) : isCauchy E => cauchy-refine (cauchy-glue Cc {\lam U V => ∃ (W : E) (U ∧ V ⊆ W)} \lam CU => X.makeCauchy $ lu CU) (\lam {_} (inP (U, V, CU, inP (W,EW,p), idp)) => inP (W, EW, p)) \lemma locallyUniform-cover-char {X : StronglyRegularUniformSpace} {C : Set (Set X)} (Cb : ∀ {U : C} (IsTotallyBoundedSet U)) (Cp : ∀ {U : C} ∃ U) {E : Set (Set X)} (Ec : isCauchy E) : IsLocallyUniform C E => \lam {U} CU => \have Du => totallyBounded-cauchy-uniform-strong {StronglyRegularUniformTransfer {Set.Total U} __.1} (UniformSpace.inhabited_weaklyProper $ Cp CU) (Cb CU) (PrecoverTransfer.makeCauchy Ec) \in uniform-subset Du \lam {V} (inP (_, inP (W,EW,idp), p)) => inP $ later (W, EW, \lam {x} (Ux,Vx) => p {x,Ux} Vx) \lemma locallyTotallyBounded-locallyUniform {X : StronglyRegularUniformSpace} (Xltb : X.isUniform IsTotallyBoundedSet) (Xd : X.IsProperUniform) : IsLocallyUniformSpace X => inP (\lam U => \Sigma (IsTotallyBoundedSet U) (∃ U), Xd Xltb, locallyUniform-cover-char (later __.1) (later __.2)) \lemma metric-cover-char {X : PseudoMetricSpace} (Xbtb : \Pi {S : Set X} -> IsBoundedSet S -> IsTotallyBoundedSet S) : IsLocallyUniformSpace X => locallyTotallyBounded-locallyUniform (uniform-subset (X.makeUniform (RealAbGroup.half>0 RealAbGroup.zro<ide)) $ later \lam {_} (inP (x,idp)) => Xbtb $ inP (1, RealAbGroup.zro<ide, \lam {y} {z} => PseudoMetricSpace.halving)) X.properUniform \lemma locallyUniformMapFromCover {X Y : UniformSpace} (Xlu : IsLocallyUniformSpace X) (f : CoverMap X Y) : LocallyUniformMap X Y f \cowith | func-locally-uniform Eu => \case Xlu \with { | inP (C,Cu,h) => inP (C, Cu, \lam CU => uniform-subset (h (f.func-cover (Y.makeCauchy Eu)) CU) \lam {V} (inP (_, inP (W,EW,idp), p)) => inP $ later (W, EW, p)) }