{- | We follow the following paper: Graham Manuell, Uniform locales and their constructive aspects, 2021, https://arxiv.org/abs/2106.00678 -} \import Algebra.Meta \import Category \import Category.Factorization \import Category.Meta \import Category.Subcat \import Equiv \import Function (isSurj) \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Order.Lattice \import Order.PartialOrder \import Paths \import Paths.Meta \import Set.Category \import Topology.Locale \open CompleteLattice(SJoin) \open Locale \open Bounded(top,top-univ) \open Nucleus \open Preorder(=_<=) \open MeetSemilattice \open FrameHom \hiding (isClosed, isDense, functor) \func star {L : Locale} (x : L) (U : L -> \Prop) => SJoin (\lam y => \Sigma (U y) (isPositive (x ∧ y))) \where { \lemma star_<= {L : Locale} {x y : L} (x<=y : x <= y) (U : L -> \Prop) : star x U <= star y U => Join-univ \lam j => Join-cond $ later (j.1, (j.2.1, positive_<= j.2.2 $ MeetSemilattice.meet-monotone x<=y <=-refl)) \lemma star-refl {L : PreuniformLocale} {x : L} {U : L -> \Prop} (uU : isUniform U) : x <= star x U => meet-univ <=-refl (top-univ <=∘ isCovering uU) <=∘ Join-ldistr>= <=∘ Join-univ (\lam (b,Ub) => overt_cover L.uniform-overt <=∘ Join-univ (\lam x^b>0 => Join-cond $ later (x ∧ b, (isDownset uU Ub meet-right, rewrite (inv meet-assoc, meet-idemp) x^b>0)))) } \func nucleus-star {L : Locale} (j : Nucleus {L}) (U : L -> \Prop) => SJoin (\lam y => \Sigma (U y) (j.locale.isPositive (j y, nucleus-join>=))) \where { \lemma star_open {L : Locale} (a : L) (U : L -> \Prop) : nucleus-star (open a) U = star a U => \have lem x P : (a --> x <= a --> pHat P) = (a ∧ x <= pHat P) => propExt (\lam c => =_<= meet-comm <=∘ exponent.2 (nucleus-unit {open a} <=∘ c)) (\lam c => nucleus-univ {open a} $ exponent.1 $ =_<= meet-comm <=∘ c) \in path (\lam i => SJoin (\lam x => \Sigma (U x) (\Pi (P : \Prop) -> lem x P i -> P))) } \class PreuniformLocale \extends Locale | uniform-overt : isOvert | isUniform : (E -> \Prop) -> \Prop | isCovering {U : E -> \Prop} : isUniform U -> top <= SJoin U | isDownset {U : E -> \Prop} {x y : E} : isUniform U -> U y -> x <= y -> U x | top-uniform : isUniform (\lam _ => \Sigma) | meet-uniform {U V : E -> \Prop} : isUniform U -> isUniform V -> isUniform (\lam x => \Sigma (U x) (V x)) | <=-uniform {U V : E -> \Prop} : isUniform U -> (\Pi {x : E} -> U x -> V x) -> (\Pi {x y : E} -> V y -> x <= y -> V x) -> isUniform V | star-uniform {U : E -> \Prop} : isUniform U -> ∃ (V : isUniform) ∀ x (V x -> U (star x V)) \where { \lemma dClosure {L M : Preorder} {f : L -> M} {U : L -> \Prop} {x y : M} (p : ∃ (z : L) (U z) (y <= f z)) (x<=y : x <= y) : ∃ (z : L) (U z) (x <= f z) \elim p | inP (z,Uz,y<=fz) => inP (z, Uz, x<=y <=∘ y<=fz) } \open PreuniformLocale(dClosure) \record UniformHom \extends FrameHom { \override Dom : PreuniformLocale \override Cod : PreuniformLocale | func-uniform {U : Dom -> \Prop} : isUniform U -> isUniform (\lam y => ∃ (x : Dom) (U x) (y <= func x)) } \record UniformEmbedding \extends UniformHom { | isEmbedding : isSurj func | isUniformEmbedding {U : Cod -> \Prop} : isUniform U -> ∃ (V : isUniform) ∀ {x} (V x -> U (func x)) \lemma direct-uniform {U : Cod -> \Prop} : isUniform U -> isUniform (\lam x => ∃ (y : Cod) (U y) (x <= direct y)) => \case isUniformEmbedding __ \with { | inP (V,uV,V<=Uf) => <=-uniform uV (\lam {x} Vx => inP (func x, V<=Uf Vx, direct-unit)) (\lam (inP (z,Uz,p)) q => inP (z, Uz, q <=∘ p)) } } \where { \func comp {L M K : PreuniformLocale} (g : UniformEmbedding M K) (f : UniformEmbedding L M) : UniformEmbedding L K \cowith | UniformHom => g PreuniformCat.∘ f | isEmbedding => isSurj.comp f.isEmbedding g.isEmbedding | isUniformEmbedding => \lam uU => \have | (inP (V,uV,cV)) => g.isUniformEmbedding uU | (inP (W,uW,cW)) => f.isUniformEmbedding uV \in inP (W, uW, \lam Wx => cV (cW Wx)) } \func \infix 4 <=u {L : PreuniformLocale} (a b : L) => ∃ (U : L -> \Prop) (isUniform U) (star a U <= b) \where { \lemma func-<=u (f : UniformHom) {a b : f.Dom} (p : a <=u b) : f a <=u f b \elim p | inP (U,uU,a*U<=b) => inP (_, func-uniform uU, Join-univ \lam (x,(inP (y,Uy,x<=fy), fa*x>0)) => x<=fy <=∘ func-<= (Join-cond $ later (y, (Uy, func_positive $ positive_<= fa*x>0 $ meet-monotone <=-refl x<=fy <=∘ func-meet>=))) <=∘ func-<= a*U<=b) \lemma adjoint (f : UniformHom) {a : f.Dom} {b : f.Cod} (p : a <=u f.direct b) : f a <=u b => <=u-trans-left (f a) (func-<=u f p) direct-counit \lemma dense {L : PreuniformLocale} {a c : L} (p : a <=u c) : ∃ (b : L) (a <=u b) (b <=u c) \elim p | inP (U,uU,a*U<=c) => \case star-uniform uU \with { | inP (V,uV,x*V<-U) => inP (star a V, inP (V,uV,<=-refl), inP (V, uV, Join-univ (\lam (y,(Vy,a*V^b>0)) => star.star-refl uV <=∘ Join-cond (later (star y V, (x*V<-U y Vy, dense.meet_star-comm L.uniform-overt $ rewrite meet-comm a*V^b>0)))) <=∘ a*U<=c)) } \where \lemma meet_star-comm {L : Locale} (o : L.isOvert) {a b : L} {U : L -> \Prop} (p : isPositive (a ∧ star b U)) : isPositive (b ∧ star a U) => \case positive_Join o (rewrite Join-ldistr in p) \with { | inP ((c,(Uc,b^c>0)),a^c>0) => rewrite Join-ldistr $ positive_Join.conv $ inP $ later ((c, (Uc, a^c>0)), b^c>0) } \lemma uniform-refine {L : PreuniformLocale} {U : L -> \Prop} (uU : isUniform U) : isUniform (\lam b => ∃ (a : L) (U a) (b <=u a)) => \case star-uniform uU \with { | inP (V,uV,x*V<-U) => <=-uniform uV (\lam {x} Vx => inP (star x V, x*V<-U x Vx, inP (V,uV,<=-refl))) (\lam {x} {y} (inP (a,Ua,y<=ua)) x<=y => inP (a, Ua, <=u-trans-right x<=y y<=ua)) } } \lemma <=u-trans-left {L : PreuniformLocale} (a : L) {b c : L} (p : a <=u b) (b<=c : b <= c) : a <=u c \elim p | inP (U,uU,a*U<=b) => inP (U, uU, a*U<=b <=∘ b<=c) \lemma <=u-trans-right {L : PreuniformLocale} {a b c : L} (a<=b : a <= b) (p : b <=u c) : a <=u c \elim p | inP (U,uU,b*U<=c) => inP (U, uU, star.star_<= a<=b U <=∘ b*U<=c) \lemma <=u_meet {L : PreuniformLocale} {a a' b b' : L} (p : a <=u a') (q : b <=u b') : a ∧ b <=u a' ∧ b' \elim p, q | inP (U,uU,a*U<=a'), inP (V,uV,b*V<=b') => inP (_, meet-uniform uU uV, Join-univ \lam s => meet-univ (Join-cond (later (s.1, (s.2.1.1, positive_<= s.2.2 $ meet-monotone meet-left <=-refl))) <=∘ a*U<=a') (Join-cond (later (s.1, (s.2.1.2, positive_<= s.2.2 $ meet-monotone meet-right <=-refl))) <=∘ b*V<=b')) \lemma <=u_<= {L : PreuniformLocale} {a b : L} (p : a <=u b) : a <= b \elim p | inP (U,uU,a*U<=b) => star.star-refl uU <=∘ a*U<=b \class UniformLocale \extends PreuniformLocale { | isAdmissible (b : E) : b <= SJoin (`<=u b) \func isComplete => Iso {PreuniformCat} (completion {\this}) } \where { \open NucleusFrame \lemma star_wclosure {L : PreuniformLocale} {j : Nucleus {L}} {U : L -> \Prop} (uU : isUniform U) : nucleus-star j.map.wclosed-image U = nucleus-star j U => \have lem x P : (j.map.wclosed-image x <= j.map.wclosed-image (pHat P)) = (j x <= j (pHat P)) => propExt (\lam c => nucleus-univ $ j.map.wclosed-image.nucleus-unit <=∘ c <=∘ wclosure_<=) (\lam c => j.map.wclosed-image.nucleus-univ $ nucleus-unit <=∘ c <=∘ Meet-univ (\lam p => p.2 nucleus-join>=)) \in path (\lam i => SJoin (\lam y => \Sigma (U y) (\Pi (P : \Prop) -> lem y P i -> P))) \lemma top>=star {L : PreuniformLocale} {j : Nucleus {L}} (o : j.locale.isOvert) {U : L -> \Prop} (uU : isUniform U) : open (nucleus-star j U) <= j => nucleus>=open $ isCovering uU <=∘ Join-univ (\lam y => j.nucleus-unit <=∘ overt_cover o {j y.1, nucleus-join>=} <=∘ nucleus-univ (Join-univ \lam jy>0 => nucleus-<= $ Join-cond $ later (y.1, (y.2, jy>0)))) \lemma wclosure>=nucleus-star {L : PreuniformLocale} {j : Nucleus {L}} (o : j.locale.isOvert) {U : L -> \Prop} (uU : isUniform U) : open (nucleus-star j U) <= j.map.wclosed-image => =_<= (pmap open $ inv $ star_wclosure uU) <=∘ top>=star (sdense_overt {<=-map j.map.wclosed-image j wclosure_<=} wclosure-sdense o) uU \lemma wclosure>=star {L : PreuniformLocale} {a : L} {U : L -> \Prop} (uU : isUniform U) : open (star a U) <= wclosed-image {Nucleus.map {open a}} => \have a-overt : isOvert {locale {open a}} => overt=open.2 $ transport (isOpen {__}) (terminal-unique {_} {locale {open a}} {terminalMap {_} {locale {open a}}} {LocaleCat.terminalMap ∘ Nucleus.map {open a}}) $ open-comp (Nucleus.map {open a}) (open-isOpen a) (terminalMap {LocaleCat} {L}) $ overt=open.1 L.uniform-overt \in =_<= (pmap open $ inv $ nucleus-star.star_open a U) <=∘ wclosure>=nucleus-star a-overt uU } \lemma uniform=>wregular {L : UniformLocale} : L.isWeaklyRegular => \lam x => L.isAdmissible x <=∘ Join-univ (\lam (b, inP (U,uU,b*U<=x)) => Join-cond $ later (b, unfold (<=<w) $ NucleusFrame.open_<= b*U<=x <=∘ UniformLocale.wclosure>=star uU)) \func PreuniformCat : Cat PreuniformLocale \cowith | Hom => UniformHom | id L => \new UniformHom { | FrameHom => FrameCat.id L | func-uniform => <=-uniform __ (\lam {x} Ux => inP (x,Ux,<=-refl)) dClosure } | o g f => \new UniformHom { | FrameHom => g FrameCat.∘ f | func-uniform uU => <=-uniform (func-uniform {g} (func-uniform {f} uU)) (\lam {x} (inP (y, inP (z,Uz,y<=fz), x<=gy)) => inP (z, Uz, x<=gy <=∘ func-<= y<=fz)) dClosure } | id-left => idp | id-right => idp | o-assoc => idp | univalence => sip \lam {X} {S1} {S2} (h1 : UniformHom) (h2 : UniformHom) => exts UniformLocale { | <= x y => ext (h1.func-<=, h2.func-<=) | meet x y => h1.func-meet | top => h1.func-top | Join f => h1.func-Join | isUniform U => ext (\lam uU => uniform-lem (h1.func-uniform uU) (\lam Uy x<=y => isDownset uU Uy (h2.func-<= x<=y)), \lam uU => uniform-lem (h2.func-uniform uU) (\lam Uy x<=y => isDownset uU Uy (h1.func-<= x<=y))) } \where { \lemma uniform-lem {L : PreuniformLocale} {U : L -> \Prop} (u : isUniform (\lam y => ∃ (x : L) (U x) (y <= x))) (d : \Pi {x y : L} -> U y -> x <= y -> U x) : isUniform U => <=-uniform u (\lam {x} (inP (y,Uy,x<=y)) => d Uy x<=y) d } \func UniformCat : Cat UniformLocale => subCat {PreuniformCat} (\new Embedding { | f L => L | isEmb (L M : UniformLocale) => \new Retraction { | sec p => path (\lam i => \new UniformLocale { | PreuniformLocale => p i | isAdmissible => prop-dpi (\Pi (b : p __) -> b <= SJoin (`<=u b)) L.isAdmissible M.isAdmissible i }) | f_sec => idpe } }) \func CompletionPres (L : UniformLocale) : FramePres L \cowith | conj => meet | BasicCover => FramePres.Indexing {\Sigma (j : Fin 4) ((L :: L :: (\Sigma (U : L -> \Prop) (isUniform U)) :: L.E :: nil) j)} \case __ \with { | (0,a) => (\Sigma, a, \lam _ => top) | (1,a) => (isPositive a, a, \lam _ => a) | (2,U) => (\Sigma (x : L) (U.1 x), top, __.1) | (3,a) => (\Sigma (b : L) (b <=u a), a, __.1) } \where { \lemma <=_cover {L : UniformLocale} {a b : L} (a<=b : a <= b) : Cover1 {CompletionPres L} a b => rewriteI (MeetSemilattice.meet_<= a<=b) (Cover.cover-proj2 idp () idp) } \open CompletionPres \open PresentedFrame \hiding (<=) \func CompletionLocale (L : UniformLocale) => PresentedFrame (CompletionPres L) \func completionLocale {L : UniformLocale} : LocaleCat.Hom L (CompletionLocale L) => FrameReflectiveSubcat.adjointMap completionLocale.presentation \where { \func presentation {L : UniformLocale} : FramePresHom (CompletionPres L) (FrameUnitalSubcat.F L) \cowith | func x => x | func-conj => idp | func-cover => FramePres.indexing-transport _ $ later \case \elim __ \with { | (0,a) => top-univ <=∘ Join-cond () | (1,a) => overt_cover uniform-overt | (2,(U,uU)) => isCovering uU | (3,a) => isAdmissible a } | func-image {x} => cover-inj x idp \lemma sdense {L : UniformLocale} : isStronglyDense {completionLocale {L}} => sdense-fromPres \lam x<=Q => Cover.cover-trans1 (<=_cover x<=Q) $ cover-trans (cover-basic $ FramePres.indexing-make $ later (1,_)) \lam p => \have (inP q) => positive_cover p _ <=-refl \in cover-inj q $ <=-antisymmetric (Join-cond q) (Join-univ (\lam _ => <=-refl)) \lemma completion_embed {L : UniformLocale} {a : L} : completionLocale (embed a) = a => <=-antisymmetric (Join-univ \lam j => FrameReflectiveSubcat.locale_cover (Cover.map {presentation} j.2) <=∘ Join-univ (\lam _ => <=-refl)) (Join-cond $ later (a, cover-inj () idp)) } \func Completion (L : UniformLocale) : UniformLocale \cowith | Locale => CompletionLocale L | uniform-overt => sdense_overt {completionLocale} completionLocale.sdense uniform-overt | isUniform (V : CompletionLocale L -> \Prop) : \Prop => ∃ (U : L -> \Prop) (L.isUniform U) (\Pi {a : L} -> U a -> V (embed a)) (\Pi {x y : CompletionLocale L} -> V y -> x <= y -> V x) | isCovering (inP (U,uU,U<=V,dV)) {x} _ => Cover.cover-trans1 (cover-basic $ indexing-make $ later (0,x)) $ cover-trans (cover-basic $ indexing-make $ later (2,(U,uU))) \lam i => later $ cover-inj ((embed i.1, U<=V i.2), i.1, cover-inj () idp) idp | isDownset (inP (U,uU,U<=V,dV)) Vy x<=y => dV Vy x<=y | top-uniform => inP (\lam _ => \Sigma, top-uniform, \lam _ => (), \lam _ _ => ()) | meet-uniform (inP (U,uU,lU,dU)) (inP (V,uV,lV,dV)) => inP (\lam x => \Sigma (U x) (V x), meet-uniform uU uV, \lam p => (lU p.1, lV p.2), \lam p x<=y => (dU p.1 x<=y, dV p.2 x<=y)) | <=-uniform (inP (U,uU,lU,dU)) U<=V dV => inP (U, uU, \lam Ua => U<=V (lU Ua), dV) | star-uniform {U} (inP (U',uU,lU,dU)) => TruncP.map (star-uniform uU) \lam (V',uV',sr) => \let (V,uV,q) => make-covering V' uV' \in (V, uV, \lam s (inP (x,V'x,s<=x)) => dU (lU (sr x V'x)) (star.star_<= s<=x V <=∘ q x)) | isAdmissible => \have | embed_<=u {a b : L} (a<=b : a <=u b) : embed a <=u {\this} embed b => TruncP.map a<=b \lam (U,uU,a*U<=b) => \have (V,uV,q) => make-covering U uU \in (V, uV, q a <=∘ Cover_embed (<=_cover a*U<=b)) | h x : FramePres.SCover x (embed __ <=u {\this} embed x) => cover-trans (cover-basic $ indexing-make $ later (3,x)) $ later \lam (y,y<=x) => cover-inj (y, embed_<=u y<=x) idp \in \lam U {x} Ux => cover-trans (h x) \lam (y,y<=x) => cover-inj ((embed y, <=u-trans-left {\this} (embed y) y<=x $ embed<= $ cover-inj (x,Ux) idp), y, cover-inj () idp) idp \where { \open FramePres(indexing-make) \func make-covering {L : UniformLocale} (U : L -> \Prop) (uU : L.isUniform U) : \Sigma (V : CompletionLocale L -> \Prop) (isUniform V) (\Pi (a : L) -> star (embed a) V <= embed (star a U)) => (\lam s => ∃ (x : L) (U x) (s <= embed x), inP (U, uU, \lam {a} Ua => inP (a,Ua,<=-refl), dClosure), \lam a => Join-univ \lam (t, (inP (y, V'y, t<=y), xt>0)) => t<=y <=∘ Cover_embed (<=_cover $ Join-cond $ later (y, (V'y, transport isPositive completionLocale.completion_embed $ sdense_positive {completionLocale} completionLocale.sdense $ transport isPositive embed_meet $ positive_<= xt>0 $ MeetSemilattice.meet-monotone (<=-refl {_} {embed a}) t<=y)))) } \func completion {L : UniformLocale} : UniformEmbedding (Completion L) L \cowith | FrameHom => completionLocale | func-uniform (inP (V,uV,V<=U,dV)) => <=-uniform uV (\lam {x} Vx => inP (embed x, V<=U Vx, Join-cond $ later (x, cover-inj () idp))) dClosure | isEmbedding a => inP (embed a, completionLocale.completion_embed) | isUniformEmbedding {U} uU => inP (\lam x => ∃ (a : L) (U a) (x <= embed a), inP (U, uU, \lam {a} Ua => inP (a,Ua,<=-refl), \lam (inP (a,Ua,y<=a)) x<=y => inP (a, Ua, x<=y <=∘ y<=a)), \lam {x} (inP (a,Ua,x<=a)) => isDownset uU (transportInv U completionLocale.completion_embed Ua) (func-<= {completionLocale} x<=a)) \where { \lemma isMono {L M : UniformLocale} {f g : UniformHom M (Completion L)} (p : completion PreuniformCat.∘ f = completion PreuniformCat.∘ g) : f = g => ext $ path (\lam i => func {WFS.left-epi sdense_wclosed_ofs completion completionLocale.sdense (wregular_wHausdorff uniform=>wregular) p i}) } \sfunc completion-factor {L M : UniformLocale} (f : UniformEmbedding M L) (sd : f.isStronglyDense) : \Sigma (g : UniformHom (Completion L) M) (f UniformCat.∘ g = completion) => \have g => \new UniformHom (Completion L) M { | FrameHom => FrameReflectiveSubcat.adjointMap (presentation f sd) | func-uniform (inP (V, uV, V<=U, Ud)) => <=-uniform (f.direct-uniform uV) (\lam (inP (y,Vy,x<=f_y)) => inP (embed y, V<=U Vy, x<=f_y <=∘ Join-cond (later (y, cover-inj () idp)))) (\lam (inP (z,Uz,p)) x<=y => inP (z, Uz, x<=y <=∘ p)) } \in (g, exts $ func-equality (g LocaleCat.∘ f) completionLocale \lam x => func-Join *> path (\lam i => Join \lam p => surjective-split f.isEmbedding p.1 i)) \where { \func presentation {L M : UniformLocale} (f : UniformEmbedding M L) (sd : f.isStronglyDense) : FramePresHom (CompletionPres L) (FrameUnitalSubcat.F M) \cowith | func => direct | func-conj => direct-meet | func-cover => FramePres.indexing-transport _ $ later \case \elim __ \with { | (0,a) => direct-<= top-univ <=∘ Join-cond () | (1,a) => overt_cover M.uniform-overt <=∘ Join-univ (\lam f_a>0 => Join-cond \lam P c => f_a>0 P $ Join-univ \lam p => sd $ p.2 <=∘ c) | (2,(U,uU)) => \have (inP (V, uV, V<=Uf)) => f.isUniformEmbedding uU \in =_<= direct-top <=∘ isCovering uV <=∘ Join-univ (\lam p => f.direct-unit <=∘ Join-cond (later (f p.1, V<=Uf p.2))) | (3,a) => isAdmissible (direct a) <=∘ Join-univ (\lam p => f.direct-unit <=∘ Join-cond (later (f p.1, <=u.adjoint f p.2))) } | func-image {y} => cover-basic $ f.direct-unit <=∘ Join-cond (f y) } \lemma completion-isComplete (L : UniformLocale) : UniformLocale.isComplete {Completion L} => \have | (g,fact) => completion-factor (UniformEmbedding.comp completion completion) (sdense-comp completion completionLocale.sdense completion completionLocale.sdense) | gc=id => completion.isMono $ equation *> fact *> inv id-right | cg=id => completion.isMono $ equation *> pmap (PreuniformCat.`∘ completion) gc=id *> PreuniformCat.id-left *> inv id-right \in \new Iso { | hinv => g | hinv_f => cg=id | f_hinv => gc=id } \func completion-functor {L M : UniformLocale} (f : UniformHom M L) : UniformHom (Completion M) (Completion L) \cowith | FrameHom => FrameReflectiveSubcat.adjointMap (presentation f) | func-uniform => \case __ \with { | inP (V,uV,V<=U,Ud) => inP (_, f.func-uniform $ <=u.uniform-refine uV, \lam {a} (inP (x, inP (z,Vz,x<=uz), a<=fx)) => inP (embed z, V<=U Vz, embed<= $ cover-inj (a, later $ cover-inj ((z, cover-inj () idp), a, cover-trans1 (<=_cover a<=fx) $ cover-inj (x, x<=uz) idp) idp) idp), \lam {x} {y} (inP (z,Uz,y<=fz)) x<=y => inP (z, Uz, x<=y <=∘ y<=fz)) } \where { \open Cover \func presentation {L M : UniformLocale} (f : UniformHom M L) : FramePresHom (CompletionPres M) (FrameUnitalSubcat.F (Completion L)) \cowith | func a => closure (\lam (t : \Sigma (b : M) (b <=u a)) => f t.1) | func-conj => <=-antisymmetric (closure<= $ later \lam p => cover-inj (f p.1, cover-idemp (f p.1, f p.1, cover-inj (p.1, <=u-trans-left _ p.2 meet-left) idp, cover-inj (p.1, <=u-trans-left _ p.2 meet-right) idp) idp) idp) (closure<= $ later \lam p => cover-inj (_, cover-trans (cover-ldistr idp p.4 (\lam _ => idp)) (\lam q => cover-trans (cover-rdistr idp p.3 (\lam _ => idp)) (\lam s => cover-inj (s.1 ∧ q.1, <=u_meet s.2 q.2) func-meet))) idp) | func-cover => FramePres.indexing-transport _ $ later \case \elim __ \with { | (0,a) => cover-trans __ \lam p => cover-inj ((), f p.1, cover-inj (p.1, <=u-trans-left _ p.2 top-univ) idp) idp | (1,a) => cover-trans __ \lam p => cover-trans (cover-basic $ FramePres.indexing-make $ later (1, f p.1)) \lam fp1>0 => cover-inj (func_positive $ positive_<= fp1>0 $ func-<= $ <=u_<= p.2, f p.1, cover-inj p idp) idp | (2,(U,uU)) => cover-trans __ \lam p => cover-trans1 (<=_cover top-univ) $ cover-trans (cover-basic $ FramePres.indexing-make $ later (2, (_, f.func-uniform $ <=u.uniform-refine uU))) $ later \lam (x, inP (z, inP (y,Uy,z<=uy), x<=fz)) => cover-inj ((y,Uy), x, cover-trans1 (<=_cover x<=fz) $ cover-inj (z, z<=uy) idp) idp | (3,a) => cover-trans __ \lam (b,b<=ua) => \case <=u.dense b<=ua \with { | inP (c,b<=uc,c<=ua) => cover-inj ((c, c<=ua), f b, cover-inj (b, b<=uc) idp) idp } } | func-image => cover-basic \lam {x} _ => cover-inj (top, x, cover-trans1 (<=_cover $ top-univ <=∘ func-top>=) $ cover-inj (top, inP (\lam _ => \Sigma, top-uniform, top-univ)) idp) idp } \lemma completion-natural {L M : UniformLocale} (f : UniformHom M L) : completion UniformCat.∘ completion-functor f = f UniformCat.∘ completion => exts \lam S => <=-antisymmetric (Join-univ \lam p => FrameReflectiveSubcat.locale_cover (Cover.map {completionLocale.presentation} p.2) <=∘ Join-univ (\lam q => FrameReflectiveSubcat.locale_cover (Cover.map {completionLocale.presentation} q.3) <=∘ Join-univ (\lam r => f.func-<= (<=u_<= r.2) <=∘ Join-cond q.1))) (Join-univ \lam p => func-<= (isAdmissible p.1) <=∘ func-Join>= <=∘ Join-univ (\lam q => Join-cond $ later (f q.1, cover-inj (p, f q.1, cover-inj q idp) idp))) *> inv func-Join \lemma completion-isReflector {L M : UniformLocale} (Mc : M.isComplete) : Equiv {UniformHom M (Completion L)} {UniformHom M L} (\lam g => completion UniformCat.∘ g) => \new QEquiv { | ret f => completion-functor f ∘ {PreuniformCat} Mc.hinv | ret_f g => completion.isMono $ inv o-assoc *> rewrite (completion-natural (completion UniformCat.∘ g)) (UniformCat.o-assoc {_} {_} {_} {_} {completion ∘ g} {completion} {Mc.hinv} *> rewrite Mc.f_hinv id-right) | f_sec f => inv (UniformCat.o-assoc {_} {_} {_} {_} {completion} {completion-functor f} {Mc.hinv}) *> rewrite completion-natural (UniformCat.o-assoc {_} {_} {_} {_} {f} {completion} {Mc.hinv} *> pmap (f ∘) Mc.f_hinv *> UniformCat.id-right {M} {L}) }