\import Algebra.Group \import Algebra.Group.Sub \import Algebra.Monoid \import Arith.Nat \import Equiv \import Equiv.Univalence \import Function.Meta \import Logic \import Logic.Classical \import Meta \import Paths \import Paths.Meta \import Relation.Equivalence \import Set.Fin \import Set.Fin.KFin \import Set.Fin.Pigeonhole \open Group \open Monoid(LDiv) \lemma lagrange-gen (H : SubGroup) (c : Choice H.Cosets) : TruncP (QEquiv {H.S} {\Sigma H.Cosets H.struct}) => \case c.choice {\lam x => \Sigma (y : H.S) (x = in~ y)} (\case \elim __ \with { | in~ y => inP (y,idp) }) \with { | inP e => inP \new QEquiv { | f x => (in~ x, \let t => e (in~ x) \in (inverse x * t.1, Quotient.equalityEquiv SubGroup.equivalence t.2)) | ret s => (e s.1).1 * inverse s.2.1 | ret_f x => rewrite (inverse_*, inverse-isInv, inv *-assoc, inverse-right) ide-left | f_sec s => \have p : in~ ((e s.1).1 * inverse s.2.1) = s.1 => ~-pequiv (later $ rewrite (inverse_*, inverse-isInv, *-assoc, inverse-left, ide-right) s.2.2) *> inv (e s.1).2 \in unfold_let $ pmap2 (__,__) p $ ext $ rewrite (p, inverse_*, inverse-isInv, *-assoc, inverse-left) ide-right } } \func lagrange (H : FinSubGroup) : LDiv (finCard {H.struct}) (finCard {H.S}) \cowith | inv => finCard {Cosets-fin H H.S} | inv-right => \case lagrange-gen H (Cosets-fin H H.S) \with { | inP p => inv $ finCard_Equiv {H.S} {ProdFin (Cosets-fin H H.S) H.struct} p *> *-comm } \where { \lemma Cosets-fin (H : DecSubGroup) (_ : KFinSet H.S) : FinSet H.Cosets => KFinSet.KFin+Dec=>Fin QuotientKFin {QuotientDec \lam g g' => later $ H.isDec _} }