\import Algebra.Meta \import Algebra.Monoid \import Algebra.Monoid.Category \import Algebra.MulOrdered \import Algebra.Pointed \import Data.Fin \import Function.Meta \import HLevel \import Logic \import Logic.Meta \import Meta \import Order.Lattice \import Order.PartialOrder \import Paths \import Paths.Meta \import Relation.Equivalence \import Set \open Monoid(LDiv,Inv) \open Preorder(PreorderC,EquivRel) \record GCD {M : CMonoid} (val1 val2 : M) (\coerce gcd : M) (gcd|val1 : LDiv gcd val1) (gcd|val2 : LDiv gcd val2) (gcd-univ : \Pi (g : M) -> LDiv g val1 -> LDiv g val2 -> LDiv g gcd) { \func swap : GCD val2 val1 gcd gcd|val2 gcd|val1 \cowith | gcd-univ g g|a g|b => gcd-univ g g|b g|a \func reduce (p : CMonoid.IsRegular gcd) : GCD gcd|val1.inv gcd|val2.inv 1 LDiv.ide-div LDiv.ide-div \cowith | gcd-univ g (g|a : LDiv) (g|b : LDiv) => \let t : LDiv => gcd-univ (gcd * g) (\new LDiv { | inv => g|a.inv | inv-right => *-assoc *> rewrite g|a.inv-right gcd|val1.inv-right }) (\new LDiv { | inv => g|b.inv | inv-right => *-assoc *> rewrite g|b.inv-right gcd|val2.inv-right }) \in \new LDiv { | inv => t.inv | inv-right => p $ inv *-assoc *> t.inv-right *> inv ide-right } } \where { \func ~-stable {M : CMonoid} {x y z z' : M} (z|z' : LDiv z z') (z'|z : LDiv z' z) (g : GCD x y z) : GCD x y z' \cowith | gcd|val1 => LDiv.trans z'|z g.gcd|val1 | gcd|val2 => LDiv.trans z'|z g.gcd|val2 | gcd-univ d d|x d|y => LDiv.trans (g.gcd-univ d d|x d|y) z|z' } \class GCDMonoid \extends CMonoid { | isGCD (x y : E) : TruncP (GCD x y) | gcd-ldistr (c : E) {x y z : E} : GCD x y z -> TruncP (GCD (c * x) (c * y) (c * z)) \lemma gcd-rdistr {x y z : E} (c : E) (gcd : GCD x y z) : TruncP (GCD (x * c) (y * c) (z * c)) => coe (\lam i => TruncP (GCD (*-comm i) (*-comm i) (*-comm i))) (gcd-ldistr c gcd) right \lemma gcd_*-comm {a b c : E} (ab : GCD a b) (a_bc : GCD a (b * c)) : TruncP (GCD a (ab.gcd * c) a_bc) => \case gcd-rdistr c ab \with { | inP (gcd : GCD) => inP \new GCD { | gcd|val1 => a_bc.gcd|val1 | gcd|val2 => gcd.gcd-univ a_bc (LDiv.trans a_bc.gcd|val1 $ LDiv.make c idp) a_bc.gcd|val2 | gcd-univ g g|a g|ab_c => a_bc.gcd-univ g g|a (LDiv.trans g|ab_c gcd.gcd|val2) } } \lemma gcd_*_div {a b c : E} (a|bc : LDiv a (b * c)) (ab : GCD a b) : TruncP (LDiv a (ab * c)) => \case gcd_*-comm ab (div_gcd a|bc) \with { | inP d => inP (GCD.gcd|val2 {d}) } \lemma coprime_*_div {a b c : E} (a|bc : LDiv a (b * c)) (a_b : IsCoprime a b) : TruncP (LDiv a c) => TruncP.map (gcd_*_div a|bc $ IsCoprime.=>gcd a_b) (transport (LDiv a) ide-left) \lemma gcd_pow_div {a b : E} {n : Nat} (a|bc : LDiv a (pow b n)) (a_b : IsCoprime a b) : TruncP (LDiv a b) \elim n | 0 => inP \new LDiv { | inv => a|bc.inv * b | inv-right => inv *-assoc *> pmap (`* b) a|bc.inv-right *> ide-left } | suc n => \case coprime_*_div (rewrite *-comm in a|bc) a_b \with { | inP r => gcd_pow_div r a_b } \lemma IsCoprime_*-right {a b c : E} (a_b : IsCoprime a b) (a_c : IsCoprime a c) : IsCoprime a (b * c) => \lam z z|a z|bl => \case coprime_*_div z|bl $ IsCoprime.factor-left z|a a_b \with { | inP r => a_c z z|a r } \lemma IsCoprime_*-left {a b c : E} (a_c : IsCoprime a c) (b_c : IsCoprime b c) : IsCoprime (a * b) c => IsCoprime.swap (IsCoprime_*-right (IsCoprime.swap a_c) (IsCoprime.swap b_c)) \lemma IsCoprime_pow-left {a b : E} (a_b : IsCoprime a b) {n : Nat} : IsCoprime (Monoid.pow a n) b \elim n | 0 => IsCoprime.IsCoprime_ide-left | suc n => IsCoprime_*-left (IsCoprime_pow-left a_b) a_b \lemma IsCoprime_pow-right {a b : E} (a_b : IsCoprime a b) {n : Nat} : IsCoprime a (Monoid.pow b n) => IsCoprime.swap $ IsCoprime_pow-left (IsCoprime.swap a_b) \lemma IsCoprime_BigProd-right {a : E} {l : Array E} (p : \Pi (j : Fin l.len) -> IsCoprime a (l j)) : IsCoprime a (Monoid.BigProd l) \elim l | nil => \lam z _ (z|1 : LDiv z 1) => Inv.lmake z|1.inv (*-comm *> z|1.inv-right) | b :: l => IsCoprime_*-right (p 0) (IsCoprime_BigProd-right \lam j => p (suc j)) \lemma IsCoprime_BigProd-left {a : E} {l : Array E} (p : \Pi (j : Fin l.len) -> IsCoprime (l j) a) : IsCoprime (Monoid.BigProd l) a => IsCoprime.swap $ IsCoprime_BigProd-right \lam j => IsCoprime.swap (p j) \lemma coprime_*_div-left {d e a : E} (d_e : IsCoprime d e) (d|a : LDiv d a) (e|a : LDiv e a) : TruncP (LDiv (d * e) a) => \case coprime_*_div (rewrite (inv e|a.inv-right) in d|a) d_e \with { | inP (r : LDiv) => inP $ LDiv.make r.inv $ pmap (`* _) *-comm *> *-assoc *> pmap (e *) r.inv-right *> e|a.inv-right } \lemma coprime_BigProd_div-left {l : Array E} {a : E} (p : \Pi (i j : Fin l.len) -> i /= j -> IsCoprime (l i) (l j)) (l|a : \Pi (j : Fin l.len) -> LDiv (l j) a) : TruncP (LDiv (BigProd l) a) \elim l | nil => inP LDiv.ide-div | d :: l => \case coprime_BigProd_div-left (\lam i j i/=j => p (suc i) (suc j) (fsuc/= i/=j)) (\lam j => l|a (suc j)) \with { | inP d' => coprime_*_div-left (IsCoprime_BigProd-right \lam j => p 0 (suc j) \case __) (l|a 0) d' } \lemma split-equiv {a b c : E} (a|bc : LDiv a (b * c)) : ∃ (a1 a2 : E) (LDiv a (a1 * a2)) (LDiv (a1 * a2) a) (LDiv a1 b) (LDiv a2 c) => \have | (inP (g : GCD)) => isGCD a b | (inP (g' : GCD)) => isGCD g.gcd|val1.inv c | (inP (g'' : GCD)) => rewrite g.gcd|val1.inv-right (gcd-ldistr g g') | (inP (g''' : GCD)) => gcd-rdistr c g \in inP (g, g', g''.gcd-univ a LDiv.id-div $ g'''.gcd-univ a (LDiv.make c idp) a|bc, g''.gcd|val1, g.gcd|val2, g'.gcd|val2) \lemma split-regular {a b c : E} (ar : IsRegular a) (a|bc : LDiv a (b * c)) : ∃ (a1 a2 : E) (a = a1 * a2) (LDiv a1 b) (LDiv a2 c) => \have | (inP (a1,a2,a|a1a2,a1a2|a,a1|b,a2|c)) => split-equiv a|bc | (u : Inv, p) => DivQuotient.regular_equivalent-associates a (a1 * a2) ar a|a1a2 a1a2|a \in inP (u * a1, a2, p *> inv *-assoc, LDiv.trans (LDiv.make u.inv $ *-comm *> inv *-assoc *> pmap (`* _) u.inv-left *> ide-left) a1|b, a2|c) } \where { \func gcd-ldistr_cancel {M : CMonoid} {c x y z : M} (cancel : IsRegular c) (gcd : GCD x y z) (gcd' : GCD (c * x) (c * y)) : GCD (c * x) (c * y) (c * z) => \let | cz|gcd' : LDiv (c * z) gcd' => gcd'.gcd-univ (c * z) (LDiv.product-left c gcd.gcd|val1) (LDiv.product-left c gcd.gcd|val2) | s => cz|gcd'.inv | cancel-c {x} {y} (d : LDiv (c * x) (c * y)) => LDiv.make d.inv (cancel (inv *-assoc *> d.inv-right)) | zs|z : LDiv (z * s) z => gcd.gcd-univ (z * s) (cancel-c $ transport (LDiv __ _) (inv cz|gcd'.inv-right *> *-assoc) gcd'.gcd|val1) (cancel-c $ transport (LDiv __ _) (inv cz|gcd'.inv-right *> *-assoc) gcd'.gcd|val2) \in GCD.~-stable (LDiv.make zs|z.inv $ pmap (`* _) (inv cz|gcd'.inv-right) *> *-assoc *> *-assoc *> pmap (c *) (inv *-assoc) *> pmap (c *) zs|z.inv-right) cz|gcd' gcd' } \class CancelGCDMonoid \extends GCDMonoid, CancelCMonoid { | gcd-ldistr c {x} {y} {z} (gcd : GCD x y z) => TruncP.map (isGCD (c * x) (c * y)) (GCDMonoid.gcd-ldistr_cancel (cancel_*-left c) gcd) \lemma gcd_*_div {a b c : E} (a|bc : LDiv a (b * c)) (ab : GCD a b) : LDiv a (ab * c) => TruncP.remove (LDiv.levelProp _ _) (GCDMonoid.gcd_*_div a|bc ab) \lemma coprime_*_div {a b c : E} (a|bc : LDiv a (b * c)) (a_b : IsCoprime a b) : LDiv a c => TruncP.remove (LDiv.levelProp _ _) (GCDMonoid.coprime_*_div a|bc a_b) \lemma gcd_pow_div {a b : E} {n : Nat} (a|bc : LDiv a (pow b n)) (a_b : IsCoprime a b) : LDiv a b => TruncP.remove (LDiv.levelProp _ _) (GCDMonoid.gcd_pow_div a|bc a_b) \lemma div_unit : (\Pi (a b : E) -> Dec (LDiv a b)) <-> (\Pi (a : E) -> Dec (Inv a)) => (\lam f a => \case f a 1 \with { | yes r => yes (Inv.ldiv r) | no r => no \lam p => r p }, \lam f a b => \case isGCD a b \with { | inP (g : GCD) => \case f g.gcd|val1.inv \with { | yes (r : Inv) => yes $ LDiv.trans (LDiv.make r.inv $ pmap (`* _) (inv g.gcd|val1.inv-right) *> *-assoc *> pmap (g *) r.inv-right *> ide-right) g.gcd|val2 | no r => no \lam a|b => r \let a|g : LDiv a g => g.gcd-univ a LDiv.id-div a|b \in Inv.lmake a|g.inv $ cancel_*-left a $ inv *-assoc *> pmap (`* _) a|g.inv-right *> g.gcd|val1.inv-right *> inv ide-right } }) } -- | Monoids with a unique unit. This is useful because the GCD relation on them is functional. \class UnitlessMonoid \extends CancelCMonoid { | uniqueUnit (j : Inv) : j.val = ide \lemma div-eq {x y : E} (d1 : LDiv x y) (d2 : LDiv y x) : x = y => \have d1=ide : d1.inv = ide => uniqueUnit (Inv.lmake d2.inv (cancel_*-left y equation)) \in equation {usingOnly d1=ide} (x * d1.inv) \lemma GCD-isProp (x y : E) : isProp (GCD x y) => \lam (g1 g2 : GCD x y) => \have p => div-eq (g2.gcd-univ g1.gcd g1.gcd|val1 g1.gcd|val2) (g1.gcd-univ g2.gcd g2.gcd|val1 g2.gcd|val2) \in path (\lam i => \new GCD x y { | gcd => p @ i | gcd|val1 => pathOver (LDiv.levelProp g2.gcd x (coe (\lam j => LDiv (p @ j) x) g1.gcd|val1 right) g2.gcd|val1) @ i | gcd|val2 => pathOver (LDiv.levelProp g2.gcd y (coe (\lam j => LDiv (p @ j) y) g1.gcd|val2 right) g2.gcd|val2) @ i | gcd-univ g g|x g|y => pathOver (LDiv.levelProp g g2.gcd (coe (\lam j => LDiv g (p @ j)) (g1.gcd-univ g g|x g|y) right) (g2.gcd-univ g g|x g|y)) @ i }) \lemma gcd-isUnique {x y : E} (g g' : GCD x y) : g.gcd = g'.gcd => pmap (\lam (g : GCD x y) => g.gcd) (GCD-isProp x y g g') } -- | GCD monoids with a unique unit. This is useful because the GCD relation on them is functional. \class UnitlessGCDMonoid \extends UnitlessMonoid, CancelGCDMonoid { \lemma gcdC (x y : E) : GCD x y \level GCD-isProp x y => TruncP.remove (GCD-isProp x y) (isGCD x y) \func gcd (x y : E) => GCD.gcd {gcdC x y} \lemma gcd_~ {x y : E} (g : GCD x y) : g.gcd = gcd x y => gcd-isUnique g (gcdC x y) \lemma gcd_*-left (c a b : E) : c * gcd a b = gcd (c * a) (c * b) => \case gcd-ldistr c (gcdC a b) \with { | inP g => gcd-isUnique g (gcdC (c * a) (c * b)) } \lemma gcd_*-right (a b c : E) : gcd a b * c = gcd (a * c) (b * c) => *-comm *> gcd_*-left c a b *> pmap2 gcd *-comm *-comm -- | Every unit-less GCD-monoid is a semilattice. \func DivLattice : JoinSemilattice E \cowith | <= x y => LDiv y x | <=-refl {x} => \new LDiv x x ide ide-right | <=-transitive y|x z|y => LDiv.trans z|y y|x | <=-antisymmetric y|x x|y => div-eq x|y y|x | ∨ => gcd | join-left {x} {y} => GCD.gcd|val1 {gcdC x y} | join-right {x} {y} => GCD.gcd|val2 {gcdC x y} | join-univ => GCD.gcd-univ _ \lemma gcd_*-comm (a b c : E) : gcd a (b * c) = gcd a (gcd a b * c) => gcd a (b * c) ==< pmap (`gcd (b * c)) (inv (DivLattice.join_<= (\new LDiv a (a * c) c idp))) >== gcd (gcd (a * c) a) (b * c) ==< pmap (\lam x => gcd x (b * c)) DivLattice.join-comm >== gcd (gcd a (a * c)) (b * c) ==< DivLattice.join-assoc >== gcd a (gcd (a * c) (b * c)) ==< pmap (gcd a) (inv (gcd_*-right a b c)) >== gcd a (gcd a b * c) `qed } -- | The quotient of a monoid by the equivalence relation ``x ~ y`` iff ``x | y`` and ``y | x``. \func DivQuotient (M : CMonoid) => PreorderC {DivPreoder M} \where { {- | The preoreder on a monoid in which ``x <= y`` iff ``y | x``. - We define {DivQuotient} as the poset completion of this preorder. -} \func DivPreoder (M : CMonoid) : Preorder M \cowith | <= x y => TruncP (LDiv y x) | <=-refl {x} => inP (\new LDiv x x ide ide-right) | <=-transitive {x} {y} {z} (inP y|x) (inP z|y) => inP (LDiv.trans z|y y|x) \func \infix 4 ~ {M : CMonoid} => Equivalence.~ {EquivRel {DivPreoder M}} \cons inD {M : CMonoid} (x : M) : DivQuotient M => in~ x \lemma make~ {M : CMonoid} {x y : M} (p : inD x = inD y) : x ~ y => Quotient.equalityEquiv (Preorder.EquivRel {DivPreoder M}) p \func regular_equivalent-associates {M : CMonoid} (x y : M) (xr : M.IsRegular x) (x|y : LDiv x y) (y|x : LDiv y x) : associates x y => (Inv.lmake x|y.inv $ xr $ inv *-assoc *> pmap (`* _) x|y.inv-right *> y|x.inv-right *> inv ide-right, inv y|x.inv-right *> *-comm) \lemma equivalent-associates {M : CancelCMonoid} (x y : M) (p : x ~ y) : associates x y \elim p | (inP y|x, inP x|y) => regular_equivalent-associates x y (cancel_*-left x) x|y y|x -- | The quotient monoid is indeed a monoid. \instance DivQuotientMonoid (M : CMonoid) : OrderedCMonoid (DivQuotient M) | Poset => Preorder.PosetC {DivPreoder M} | ide => inD ide | * => *' | ide-left {inD x} => pmap inD ide-left | *-assoc {inD x} {inD y} {inD z} => pmap inD *-assoc | *-comm {inD x} {inD y} => pmap inD *-comm | <=_*-left (inD z) {inD x} {inD y} (inP (y|x : LDiv)) => inP (\new LDiv { | inv => y|x.inv | inv-right => pmap (`* _) *-comm *> *-assoc *> pmap (z *) y|x.inv-right *> *-comm }) \where { \func \infixl 7 *' {M : CMonoid} (x y : DivQuotient M) : DivQuotient M | inD x, inD y => inD (x * y) | inD x, ~-equiv y y' y~y' i => ~-equiv (x * y) (x * y') (\case y~y' \with { | (inP y'|y, inP y|y') => (inP (LDiv.product-left x y'|y), inP (LDiv.product-left x y|y')) }) i | ~-equiv x x' x~x' i, inD y => ~-equiv (x * y) (x' * y) (\case x~x' \with { | (inP x'|x, inP x|x') => (inP (LDiv.product-right y x'|x), inP (LDiv.product-right y x|x')) }) i } \func inDHom (M : CMonoid) : MonoidHom M (DivQuotientMonoid M) \cowith | func => inD | func-ide => idp | func-* => idp -- | If the original monoid is cancellative, then so is the quotient monoid. \instance DivQuotientCancelMonoid (M : CancelCMonoid) : UnitlessMonoid | CMonoid => DivQuotientMonoid M | cancel_*-left (inD x) {inD y} {inD z} x*y=x*z => path (~-equiv y z ( \case make~ x*y=x*z \return y ~ z \with { | (inP x*z|x*y, inP x*y|x*z) => (inP (LDiv.cancel-left x x*z|x*y), inP (LDiv.cancel-left x x*y|x*z)) })) | uniqueUnit (j : Inv) => \case j.val \as [x], j.inv \as [y], j.inv-right : [x] * [y] = inD ide \return [x] = inD ide \with { | inD x, inD y, p => path (~-equiv x ide (inv~ide (\have d : LDiv x ide => div-from~ (\new LDiv { | inv => inD y | inv-right => p }) \in Inv.rmake d.inv d.inv-right))) } \lemma inv~ide {M : CMonoid} (i : Inv {M}) : i ~ ide => (inP (\new LDiv ide i i ide-left), inP (\new LDiv i ide i.inv i.inv-right)) \func div-to~ {M : CMonoid} {x y : M} (x|y : LDiv x y) : LDiv (inD x) (inD y) \cowith | inv => inD x|y.inv | inv-right => pmap inD x|y.inv-right \lemma div-from~' {M : CMonoid} {x y : M} (d : LDiv (inD x) (inD y)) : TruncP (LDiv x y) => \case d.inv \as i, d.inv-right : inD x * i = inD y \with { | inD i, ~x*i=y => \case (make~ ~x*i=y).2 \with { | inP (x*i|y : LDiv (x * i) y) => inP \new LDiv x y (i * x*i|y.inv) (inv *-assoc *> x*i|y.inv-right) } } \lemma div-from~ {M : CancelCMonoid} {x y : M} (d : LDiv (inD x) (inD y)) : LDiv x y => \case div-from~' d \with { | inP r => r } \func map {M N : CMonoid} (f : MonoidHom M N) : MonoidHom (DivQuotientMonoid M) (DivQuotientMonoid N) \cowith | func => Quotient.map f \lam p => later (TruncP.map p.1 f.func-LDiv, TruncP.map p.2 f.func-LDiv) | func-ide => pmap in~ f.func-ide | func-* {x} {y} => \case \elim x, \elim y \with { | in~ a, in~ a' => pmap in~ f.func-* } -- | If the original monoid is a GCD-monoid, then the quotient monoid is a unit-less GCD-monoid. \instance DivQuotientGCDMonoid (M : CancelGCDMonoid) : UnitlessGCDMonoid | UnitlessMonoid => DivQuotientCancelMonoid M | isGCD (inD x) (inD y) => TruncP.map (isGCD x y) (\lam (g : GCD x y) => \new GCD (inD x) (inD y) (inD g.gcd) { | gcd|val1 => div-to~ g.gcd|val1 | gcd|val2 => div-to~ g.gcd|val2 | gcd-univ [g'] [g']|x [g']|y => \case \elim [g'], [g']|x, [g']|y \return LDiv [g'] (inD g.gcd) \level LDiv.levelProp [g'] (inD g.gcd) \with { | inD g', (inD x', ~x'*g'=x), (inD y', ~y'*g'=y) => div-to~ (g.gcd-univ g' (div-from~ (\new LDiv { | inv => inD x' | inv-right => ~x'*g'=x })) (div-from~ (\new LDiv { | inv => inD y' | inv-right => ~y'*g'=y }))) } }) \func gcd-to~ {M : CancelCMonoid} {x y z : M} (g : GCD x y z) : GCD (inD x) (inD y) (inD z) \cowith | gcd|val1 => div-to~ g.gcd|val1 | gcd|val2 => div-to~ g.gcd|val2 | gcd-univ [g] [g]|[x] [g]|[y] => \case \elim [g], [g]|[x], [g]|[y] \return LDiv [g] (inD z) \level LDiv.levelProp [g] (inD z) \with { | inD g', ~g'|x, ~g'|y => div-to~ (g.gcd-univ g' (div-from~ ~g'|x) (div-from~ ~g'|y)) } \func gcd-from~ {M : CancelCMonoid} {x y z : M} (g : GCD (inD x) (inD y) (inD z)) : GCD x y z \cowith | gcd|val1 => div-from~ g.gcd|val1 | gcd|val2 => div-from~ g.gcd|val2 | gcd-univ d d|x d|y => div-from~ (g.gcd-univ (inD d) (div-to~ d|x) (div-to~ d|y)) \lemma elemDivChain {M : CMonoid} (c : CMonoid.DivChain {DivQuotientMonoid M}) : M.DivChain => \lam a d => \have | (inP s) => c (\lam i => in~ (a i)) \lam i => TruncP.map (d i) div-to~ | (inP r) => div-from~' s.2 \in inP (s.1,r) } \func div_gcd {M : CMonoid} {a b : M} (a|b : LDiv a b) : GCD a b a \cowith | gcd|val1 => LDiv.make 1 ide-right | gcd|val2 => a|b | gcd-univ g g|a g|b => g|a \func gcd_reduced=1 {M : CancelCMonoid} (gcd : GCD {M}) : GCD gcd.gcd|val1.inv gcd.gcd|val2.inv 1 => gcd.reduce (cancel_*-left gcd.gcd) \lemma gcd-isUnique {M : CancelCMonoid} {a b : M} (g1 g2 : GCD a b) : associates g1.gcd g2.gcd => equivalent-associates g1.gcd g2.gcd (DivQuotient.make~ (gcd-isUnique (gcd-to~ g1) (gcd-to~ g2))) \where { \open DivQuotient \open UnitlessMonoid } \type IsCoprime {M : CMonoid} (x y : M) => \Pi (z : M) -> LDiv z x -> LDiv z y -> Inv z \where { \func =>gcd {x y : M} (c : IsCoprime x y) : GCD x y ide \cowith | gcd|val1 => \new LDiv ide x x ide-left | gcd|val2 => \new LDiv ide y y ide-left | gcd-univ g g|x g|y => \have i : Inv g => c g g|x g|y \in \new LDiv g ide i.inv i.inv-right \lemma <=gcdInv {x y : M} (g : GCD x y) (gi : Inv g.gcd) : IsCoprime x y => \lam z z|x z|y => \have z|g : LDiv z g.gcd => g.gcd-univ z z|x z|y \in Inv.rmake (z|g.inv * gi.inv) $ inv *-assoc *> pmap (`* _) z|g.inv-right *> gi.inv-right \lemma <=gcd {x y : M} (g : GCD x y ide) : IsCoprime x y => <=gcdInv g Inv.ide-isInv \lemma factor-left {M : CMonoid} {x y z : M} (d : LDiv x y) (p : IsCoprime y z) : IsCoprime x z => \lam w w|x w|z => p w (LDiv.trans w|x d) w|z \lemma factor-right {M : CMonoid} {x y z : M} (d : LDiv y z) (p : IsCoprime x z) : IsCoprime x y => \lam w w|x w|y => p w w|x (LDiv.trans w|y d) \lemma swap {M : CMonoid} {x y : M} (c : IsCoprime x y) : IsCoprime y x => \lam z z|x z|y => c z z|y z|x \lemma IsCoprime_ide-left {a : M} : IsCoprime 1 a => \lam z z|1 _ => Inv.ldiv z|1 \lemma IsCoprime_ide-right {a : M} : IsCoprime a 1 => \lam z _ z|1 => Inv.ldiv z|1 } \type IsCoprimeArray {M : CMonoid} (l : Array M) => \Pi (z : M) -> DArray (\lam j => LDiv z (l j)) -> Inv z