\import Algebra.Group \import Analysis.Limit \import Arith.Real \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Operations \import Order.Directed \import Order.PartialOrder \import Order.StrictOrder \import Paths \import Paths.Meta \import Set.Subset \import Topology.CoverSpace \import Topology.CoverSpace.Complete \import Topology.CoverSpace.Directed \import Topology.CoverSpace.Product \import Topology.MetricSpace \import Topology.TopAbGroup \import Topology.TopSpace \import Topology.UniformSpace \open ProductCoverSpace \open CoverMap \func IsFuncConvergent {I : DirectedSet} {X Y : CoverSpace} (f : I -> X -> Y) : \Prop => CoverMap (DirectedCoverSpace I ⨯ X) Y \lam s => f s.1 s.2 \lemma funcConv-pointwise {I : DirectedSet} {X Y : CoverSpace} (f : I -> X -> Y) (fc : IsFuncConvergent f) {x : X} : IsConvergent (f __ x) => fc ∘ tuple id (const x) \lemma funcLimit {I : DirectedSet} {X : CoverSpace} {Y : CompleteCoverSpace} (f : I -> X -> Y) (fc : IsFuncConvergent f) : CoverMap X Y \lam x => limit (f __ x) (funcConv-pointwise f fc) => \have | de => prod.isDenseEmbedding completion.isDenseEmbedding id-denseEmbedding | lift => dense-lift (prod completion id) de fc \in transport (CoverMap X Y) (ext \lam x => dense-lift-unique completion completion.isDenseEmbedding.1 (lift ∘ tuple id (const x)) (completion-lift $ funcConv-pointwise f fc) (\lam n => dense-lift-char de {fc} (n,x) *> inv (completion-lift-char {_} {_} {funcConv-pointwise f fc} n)) limit.infPoint) $ lift ∘ tuple (const limit.infPoint) id \lemma funcConvergent-char {I : DirectedSet} {X Y : CoverSpace} (f : I -> CoverMap X Y) (fc : ∀ {D : Y.isCauchy} (X.isCauchy \lam U => ∃ (N : I) (V : D) ∀ {n} {x} (N <= n -> U x -> V (f n x)))) : IsFuncConvergent (\lam n => f n) => regPrecoverSpace-extend-coverMap {DirectedCoverSpace.precover ⨯ X} \new PrecoverMap { | func s => f s.1 s.2 | func-cover Dc => directedProdCover-char.2 (cauchy-subset (fc Dc) \lam (inP (N,V,DV,h)) => inP $ later (N, _, inP (V, DV, idp), h), \lam n => cauchy-subset (func-cover {f n} Dc) \lam {_} (inP (V,DV,idp)) => inP $ later (_, inP (V, DV, idp), \lam s => s)) } \where { \protected \lemma conv {I : DirectedSet} {X Y : CoverSpace} (f : I -> CoverMap X Y) (fc : IsFuncConvergent (\lam n => f n)) : ∀ {D : Y.isCauchy} (X.isCauchy \lam U => ∃ (N : I) (V : D) ∀ {n} {x} (N <= n -> U x -> V (f n x))) => \lam Dc => cauchy-subset (directedProdCover-char.1 $ func-cover {tuple.precover (regPrecoverSpace PrecoverMap.∘ ProductPrecoverSpace.proj1) ProductPrecoverSpace.proj2} $ fc.func-cover Dc).1 \lam (inP (N, _, inP (_, inP (V,DV,idp), idp), h)) => inP $ later (N, V, DV, h) } \lemma funcConvergent-uniform-char {I : DirectedSet} {X : CoverSpace} {Y : UniformSpace} (f : I -> CoverMap X Y) (fc : ∀ {E : Y.isUniform} (X.isCauchy \lam U => ∃ (N : I) ∀ {x : U} ∃ (W : E) ∀ {n} (N <= n -> W (f n x)))) : IsFuncConvergent (\lam n => f n) => split f \lam Eu => \case uniform-star Eu \with { | inP (E',E'u,E'<E) => inP (_, fc E'u , \lam (inP (N,h)) => inP (N, _, func-cover {f N} $ Y.makeCauchy E'u, \lam {_} (inP (W',E'W',idp)) => \case E'<E E'W' \with { | inP (W,EW,g) => inP (W, EW, \lam N<=n {x} Ux (W'fNx) => \case h Ux \with { | inP (W'',E'W'',c) => g E'W'' (f N x, (W'fNx, c <=-refl)) (c N<=n) }) })) } \where { \protected \lemma split {I : DirectedSet} {X : CoverSpace} {Y : UniformSpace} (f : I -> CoverMap X Y) (fc : ∀ {E : Y.isUniform} ∃ (C : X.isCauchy) ∀ {U : C} ∃ (N : I) (D : X.isCauchy) ∀ {V : D} ∃ (W : E) ∀ {n} (N <= n) ∀ {x} (U x -> V x -> W (f n x))) : IsFuncConvergent (\lam n => f n) => regPrecoverSpace-extend-coverMap {DirectedCoverSpace.precover ⨯ X} \new PrecoverMap { | func s => f s.1 s.2 | func-cover Dc => ClosurePrecoverSpace.closure-univ-cover {_} {_} {DirectedCoverSpace.precover ⨯ X} (\lam {E} Eu => \case fc Eu \with { | inP (C,Cc,h) => directedProdCover-char.2 (cauchy-subset (cauchy-glue Cc {\lam U V => ∃ (N : I) (W : E) ∀ {n} (N <= n) ∀ {x} (U x -> V x -> W (f n x))} \lam CU => \case h CU \with { | inP (N,D,Dc,Dg) => cauchy-subset Dc \lam {V} DV => \case Dg DV \with { | inP (W,EW,Eg) => inP $ later (N,W,EW,Eg) } }) \lam {_} (inP (U, V, CU, inP (N,W,EW,g), idp)) => inP $ later (N, _, inP (W, EW, idp), \lam p (Ux,Vx) => g p Ux Vx), \lam n => cauchy-subset (func-cover {f n} $ Y.makeCauchy Eu) \lam {_} (inP (V,DV,idp)) => inP $ later (_, inP (V, DV, idp), \lam s => s)) }) (uniform-cauchy.1 Dc) } \protected \lemma conv {I : DirectedSet} {X : CoverSpace} {Y : UniformSpace} (f : I -> CoverMap X Y) (fc : IsFuncConvergent \lam n => f n) : ∀ {E : Y.isUniform} (X.isCauchy \lam U => ∃ (N : I) ∀ {x : U} ∃ (W : E) ∀ {n} (N <= n -> W (f n x))) => \lam Eu => cauchy-subset (funcConvergent-char.conv f fc $ Y.makeCauchy Eu) \lam (inP (N,V,EV,h)) => inP $ later (N, \lam Ux => inP (V, EV, h __ Ux)) } \lemma funcCovergent-metric-char {I : DirectedSet} {X : CoverSpace} {Y : PseudoMetricSpace} (f : I -> CoverMap X Y) (fc : \Pi {eps : Real} -> 0 < eps -> X.isCauchy \lam U => ∃ (N : I) ∀ {x : U} ∀ {n} (N <= n -> dist (f n x) (f N x) < eps)) : IsFuncConvergent (\lam n => f n) => funcConvergent-uniform-char f \lam Eu => \case dist-uniform.1 Eu \with { | inP (eps,eps>0,h) => cauchy-subset (fc eps>0) \lam (inP (N,g)) => inP $ later (N, \lam {x} Ux => \case h (f N x) \with { | inP (U,EU,dU) => inP (U, EU, \lam p => dU $ rewrite dist-symm $ g Ux p) }) } \where { \protected \lemma conv {I : DirectedSet} {X : CoverSpace} {Y : PseudoMetricSpace} (f : I -> CoverMap X Y) (fc : IsFuncConvergent (\lam n => f n)) : \Pi {eps : Real} -> 0 < eps -> X.isCauchy \lam U => ∃ (N : I) ∀ {x : U} ∀ {n} (N <= n -> dist (f n x) (f N x) < eps) => \lam eps>0 => cauchy-subset (funcConvergent-uniform-char.conv f fc $ Y.makeUniform $ RealAbGroup.half>0 eps>0) \lam (inP (N,g)) => inP $ later (N, \lam Ux p => \case g Ux \with { | inP (_, inP (y,idp), h) => Y.halving (h p) (h <=-refl) }) } \lemma funcCovergent-topAb-char {I : DirectedSet} {X : CoverSpace} {Y : TopAbGroup} (f : I -> CoverMap X Y) (fc : ∀ {U : Y.isOpen} (U 0) (X.isCauchy \lam V => ∃ (N : I) ∀ {x : V} ∀ {n} (N <= n -> U (f n x - f N x)))) : IsFuncConvergent (\lam n => f n) => funcConvergent-uniform-char f \lam Eu => \case neighborhood-uniform.1 Eu \with { | inP (U,Uo,U0,h) => cauchy-subset (fc (negative-cont.func-cont Uo) $ simplify U0) \lam {V} (inP (N,g)) => inP $ later (N, \lam {x} Vx => \case h (f N x) \with { | inP (W,EW,dW) => inP (W, EW, \lam p => dW $ simplify in g Vx p) }) } \where { \protected \lemma conv {I : DirectedSet} {X : CoverSpace} {Y : TopAbGroup} (f : I -> CoverMap X Y) (fc : IsFuncConvergent (\lam n => f n)) : ∀ {U : Y.isOpen} (U 0) (X.isCauchy \lam V => ∃ (N : I) ∀ {x : V} ∀ {n} (N <= n -> U (f n x - f N x))) => \lam {U} Uo U0 => \case Y.shrink Uo U0 \with { | inP (U',U'o,U'0,h) => cauchy-subset (funcConvergent-uniform-char.conv f fc $ Y.makeUniform U'o U'0) \lam {V} (inP (N,g)) => inP $ later (N, \lam Vx p => \case g Vx \with { | inP (_, inP (y,idp), dW) => transport U Y.diff-cancel-left $ h (dW <=-refl) (dW p) }) } } \func IsUniFuncConvergent {I : DirectedSet} {X : \Set} {Y : UniformSpace} (f : I -> X -> Y) : \Prop => ∀ {D : Y.isUniform} ∃ (N : I) ∀ x ∃ (V : D) ∀ {n} (N <= n -> V (f n x)) \lemma funcCovergent-uni {I : DirectedSet} {X : CoverSpace} {Y : UniformSpace} (f : I -> CoverMap X Y) (fc : IsUniFuncConvergent \lam n => f n) : IsFuncConvergent \lam n => f n => funcConvergent-uniform-char f \lam Eu => top-cauchy \case fc Eu \with { | inP (N,h) => inP $ later (N, \lam {x} _ => h x) }