\import Algebra.Group \import Algebra.Meta \import Algebra.Ordered \import Arith.Rat \import Arith.Real \import Arith.Real.Field \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Order.Directed \import Order.LinearOrder \import Order.PartialOrder \import Order.StrictOrder \import Paths \import Paths.Meta \import Set.Filter \import Set.Partial \import Topology.CoverSpace \import Topology.CoverSpace.Complete \import Topology.CoverSpace.Directed \import Topology.MetricSpace \import Topology.NormedAbGroup \import Topology.NormedAbGroup.Real \import Topology.TopAbGroup \import Topology.TopSpace \import Topology.UniformSpace \func IsConvergent {I : DirectedSet} {X : CoverSpace} (f : I -> X) : \Prop => CoverMap (DirectedCoverSpace I) X f \lemma convergent-char {I : DirectedSet} {X : CoverSpace} {f : I -> X} (p : ∀ {C : X.isCauchy} ∃ (U : C) (N : I) ∀ {n} (N <= n -> U (f n))) : IsConvergent f => regPrecoverSpace-extend-coverMap \new PrecoverMap { | func => f | func-cover Dc => \case p Dc \with { | inP (U,DU,N,g) => later (inP (_, inP (U, DU, idp), N, g), \lam n => \case cauchy-cover Dc (f n) \with { | inP (V,DV,Vfn) => inP (_, inP (V, DV, idp), Vfn) }) } } \where \protected \lemma conv {I : DirectedSet} {X : CoverSpace} {f : I -> X} (fc : IsConvergent f) : ∀ {C : X.isCauchy} ∃ (U : C) (N : I) ∀ {n} (N <= n -> U (f n)) => \lam Cc => \case (func-cover {regPrecoverSpace} $ func-cover {fc} Cc).1 \with { | inP (_, inP (_, inP (U, CU, idp), idp), N, g) => inP (U, CU, N, g) } \lemma limit-conv {I : DirectedSet} {X : CoverSpace} {f : I -> X} {l : X} (fl : X.IsLimit f l) : IsConvergent f => convergent-char \lam Cc => \case X.cauchy-regular-cover Cc l \with { | inP (U,CU,l<=<U) => \case fl (X.interior {U}) l<=<U \with { | inP (N,g) => inP (U, CU, N, \lam p => <=<_<= (g p) idp) } } \func limit {I : DirectedSet} {X : CompleteCoverSpace} (f : I -> X) : Partial X \cowith | isDefined => IsConvergent f | value fc => completion-lift fc infPoint \where { \func infPoint {I : DirectedSet} : Completion (DirectedCoverSpace I) => CompleteCoverSpace.filter-point $ completion.func-cauchy EventualityFilter \protected \lemma char (fc : CoverMap (DirectedCoverSpace I) X) : limit fc fc = CompleteCoverSpace.filter-point (fc.func-cauchy EventualityFilter) => completion-lift-natural EventualityFilter } \lemma limit-isLimit {I : DirectedSet} {X : CompleteCoverSpace} (fc : CoverMap (DirectedCoverSpace I) X) : X.IsLimit fc (limit fc fc) => rewrite limit.char \lam Uo Ul => CompleteCoverSpace.filter-point-sub (X.open-char.1 Uo Ul) \lemma limit-char {I : DirectedSet} {X : CompleteCoverSpace} {f : I -> X} {l : X} : (limit f = defined l) <-> X.IsLimit f l => (\lam p => rewriteI (defined-ext.value {_} {limit f} p) $ limit-isLimit (defined-ext.isDefined {_} {limit f} p), \lam fl => defined-ext {_} {limit f} (limit-conv fl) $ inv $ isSeparatedCoverSpace $ SeparatedCoverSpace.separated-char 4 7 \lam {U} l<=<U => \case <=<-inter l<=<U \with { | inP (U',l<=<U',U'<=<U) => \case fl X.interior l<=<U' \with { | inP (N,g) => transportInv U (limit.char (limit-conv fl)) $ <=<_<= (CompleteCoverSpace.filter-point-elem U'<=<U $ inP $ later (N, \lam p => <=<_<= (g p) idp)) idp } }) \lemma convergent-uniform-char {I : DirectedSet} {X : UniformSpace} {f : I -> X} (p : ∀ {C : X.isUniform} ∃ (U : C) (N : I) ∀ {n} (N <= n -> U (f n))) : IsConvergent f => convergent-char \lam Cc => \case ClosurePrecoverSpace.closure-filter (\new SetFilter X { | F U => ∃ (N : I) ∀ {n} (N <= n -> U (f n)) | filter-mono p (inP (N,g)) => inP (N, \lam q => p (g q)) | filter-top => \case I.isInhabitted \with { | inP N => inP (N, \lam _ => ()) } | filter-meet (inP (N,g)) (inP (M,h)) => \case isDirected N M \with { | inP (L,N<=L,M<=L) => inP (L, \lam L<=n => (g $ N<=L <=∘ L<=n, h $ M<=L <=∘ L<=n)) } }) (\lam Cu => \case p Cu \with { | inP (U,CU,N,g) => inP (U, CU, inP (N,g)) }) (uniform-cauchy.1 Cc) \with { | inP (U, CU, inP (N,g)) => inP (U, CU, N, g) } \where \protected \lemma conv {I : DirectedSet} {X : UniformSpace} {f : I -> X} (fc : IsConvergent f) : ∀ {C : X.isUniform} ∃ (U : C) (N : I) ∀ {n} (N <= n -> U (f n)) => \lam Cu => convergent-char.conv fc (X.makeCauchy Cu) \lemma convergent-topAbGruop-char {I : DirectedSet} {X : TopAbGroup} {f : I -> X} : TFAE ( IsConvergent f, ∀ {U : X.isOpen} (U 0) ∃ (N : I) ∀ {n m} (N <= n -> n <= m -> U (f m - f n)), ∀ {U : X.isOpen} (U 0) ∃ (N : I) ∀ {n} (N <= n -> U (f n - f N)) ) => TFAE.cycle ( \lam fc {U} Uo U0 => \case X.shrink Uo U0 \with { | inP (V,Vo,V0,g) => \case convergent-uniform-char.conv fc $ X.makeUniform (negative-cont.func-cont Vo) (simplify V0) \with { | inP (_, inP (x, idp), N, h) => inP (N, \lam p q => transport U simplify $ g (h $ p <=∘ q) (h p)) } }, \lam fc Uo U0 => \case fc Uo U0 \with { | inP (N,g) => inP (N, \lam p => g <=-refl p) }, \lam fc => convergent-uniform-char \lam Cu => \case neighborhood-uniform.1 Cu \with { | inP (U,Uo,U0,h) => \case fc (negative-cont.func-cont Uo) (simplify U0) \with { | inP (N,g) => \case h (f N) \with { | inP (V,CV,UV) => inP (V, CV, N, \lam p => UV $ simplify in g p) } } }) \lemma convergent-metric-char {I : DirectedSet} {X : PseudoMetricSpace} {f : I -> X} : TFAE ( IsConvergent f, ∀ {eps : Real} (0 < eps) ∃ (N : I) ∀ {n} (N <= n -> dist (f n) (f N) < eps), ∀ {eps : Rat } (0 < eps) ∃ (N : I) ∀ {n} (N <= n -> dist (f n) (f N) < eps) ) => TFAE.cycle ( \lam fc eps>0 => \case convergent-uniform-char.conv fc $ X.makeUniform (RealAbGroup.half>0 eps>0) \with { | inP (_, inP (x, idp), N, g) => inP (N, \lam p => X.halving (g p) (g <=-refl)) }, \lam fc eps>0 => fc $ real_<_L.2 eps>0, \lam fc => convergent-uniform-char \lam Cu => \case X.dist-uniform-rat.1 Cu \with { | inP (eps,eps>0,h) => \case fc eps>0 \with { | inP (N,g) => \case h (f N) \with { | inP (V,CV,dV) => inP (V, CV, N, \lam p => dV $ rewrite dist-symm $ g p) } } } ) \lemma limit-metric-char {I : DirectedSet} {X : PseudoMetricSpace} {f : I -> X} {l : X} : X.IsLimit f l <-> ∀ {eps} (0 < eps) ∃ (N : I) ∀ {n} (N <= n -> dist l (f n) < eps) => (\lam fl eps>0 => fl OBall-open (OBall-center eps>0), \lam fl Uo U0 => \case dist_open.1 Uo U0 \with { | inP (eps,eps>0,q) => \case fl eps>0 \with { | inP (N,g) => inP (N, \lam p => q (g p)) } }) \lemma convergent-compose {I : DirectedSet} {X Y : CoverSpace} {f : I -> X} (fc : IsConvergent f) (g : CoverMap X Y) : IsConvergent \lam n => g (f n) => g CoverMap.∘ fc \lemma limit-bound {I : DirectedSet} {f : I -> Real} {b : Real} (fb : \Pi (n : I) -> b <= f n) {l : Real} (fl : RealNormed.IsLimit f l) : b <= l => \lam l<b => \case fl (OBall-open {_} {b - l} {l}) (rewrite dist-refl linarith) \with { | inP (N,g) => linarith $ LinearlyOrderedAbGroup.abs>=_- <∘r (rewrite norm-dist in g <=-refl) }