\import Category.Adjoint
\import Category.CartesianClosed
\import Category.Functor
\import Equiv
\import Order.Lattice
\import Order.PartialOrder
\import Paths
\import Paths.Meta
\lemma \infixr 8 =<= {E : Preorder} {x y z : E}
(p : x = y) (q : y <= z) : x <= z => transport (__ <= z) (inv p) q
\class HeytingAlebra \extends CartesianClosedPrecat (\lp, \lp), Bounded.DistributiveLattice {
| implies \alias \infixr 5 --> : E -> E -> E
| exponent-left {x a b : E} : x ∧ a <= b -> x <= a --> b
| exponent-right {x a b : E} : x <= a --> b -> x ∧ a <= b
| modus-ponens {x y : E} : x ∧ (x --> y) <= y
| modus-ponens' {x y : E} : (x --> y) ∧ x <= y
\default modus-ponens' => exponent-right <=-refl
\default modus-ponens => meet-comm =<= modus-ponens'
\default top \as top-impl => bottom --> bottom
\default top-univ {x : E} : x <= top-impl => exponent-left meet-right
\default ldistr>= {x y z : E} : x ∧ (y ∨ z) <= (x ∧ y) ∨ (x ∧ z) => meet-comm =<= exponent-right (join-univ (exponent-left (meet-comm =<= join-left)) (exponent-left (meet-comm =<= join-right)))
\lemma composition-law {x y z : E} : (x --> y) ∧ (y --> z) <= x --> z => exponent-left
(meet-assoc *> meet-comm *> meet-assoc
=<= meet-monotone <=-refl modus-ponens <=∘ modus-ponens')
\func continuation (y : E) (x : E) => (x --> y) --> y
\func neg (x : E) => x --> bottom
\func double-neg => continuation bottom
\func curry {x y z : E} : x ∧ y --> z <= x --> (y --> z) =>
exponent-left (exponent-left (meet-assoc =<= modus-ponens'))
\func -->-monotone {x y z : E} (p : y <= z) : x --> y <= x --> z => exponent-left (modus-ponens' <=∘ p)
\func -->-increasing {x y : E} : y <= x --> y => exponent-left meet-left
\lemma meet-monotone-partial {x y z : E} (p : y <= z) : x ∧ y <= x ∧ z => meet-monotone <=-refl p
\lemma meet-monotone-partial' {x y z : E} (p : x <= y) : x ∧ z <= y ∧ z =>
meet-comm =<= meet-monotone-partial p <=∘ (=_<= meet-comm)
\func _-->-antimonotone {x y z : E} (p : y <= z) : z --> x <= y --> x =>
exponent-left (meet-monotone-partial p <=∘ modus-ponens')
\lemma double-->-increasing {x y : E} : x <= (x --> y) --> y => exponent-left modus-ponens
\lemma double-->-idempotent {x y : E} : (((x --> y) --> y) --> y) --> y <= (x --> y) --> y =>
exponent-left (meet-monotone-partial double-->-increasing <=∘ modus-ponens')
\lemma double-->-monotone {x y z : E} (p : y <= z) : continuation x y <= continuation x z =>
exponent-left (meet-monotone-partial (_-->-antimonotone p) <=∘ modus-ponens')
\lemma exponent-adj-unit {x y : E} : x <= y --> x ∧ y => exponent-left <=-refl
\lemma adj-lemma {x y z : E} (f : x <= z --> y) : x ∧ z <= y => meet-monotone-partial' f <=∘ modus-ponens'
\func exponent-functor (X : E) : Functor \this \this
\cowith
| F Y => X --> Y
| Func f => -->-monotone f
| Func-id => idp
| Func-o => idp
\default exp (Y : E) : RightAdjoint \this \this { | LAdj => bprodFunctorRight Y}
\cowith
| Functor => exponent-functor Y
| eta => \new NatTrans {
| trans _ => exponent-adj-unit
| natural _ => idp
}
| isAdjoint => \new Equiv {
| ret => adj-lemma
| ret_f _ => ext
| sec => adj-lemma
| f_sec _ => ext
}
}