\import Category.Functor
\import Data.Bool
\import Equiv
\import Function.Meta
\import Logic
\import Logic.Meta
\import Meta
\import Order.Lattice
\import Order.PartialOrder
\import Paths
\import Paths.Meta
\import Set.Filter
\import Set.Subset
\import Topology.CoverSpace
\import Topology.CoverSpace.Category
\import Topology.CoverSpace.Complete
\import Topology.Locale \hiding (<=<_<=, func-cover)
\import Topology.Locale.Points
\import Topology.RatherBelow
\open Bounded(top,top-univ,bottom,bottom-univ)
\open LocalePrecoverSpace
\open RatherBelow

\func CoverSpaceLocale (X : PrecoverSpace) : Locale
=> PresentedFrame (framePres {X})
\where {
\open PresentedFrame

\func framePres {X : PrecoverSpace} : FramePres (Set X) \cowith
| conj => ∧
| BasicCover {J} U f => Given (U = {Set X} top) (C : X.isCauchy) (∀ {V : C} ∃ (j : J) (f j = V)) || (\Pi {V : Set X} -> V s<=< U -> ∃ (j : J) (f j = V)) || (U = {Set X} bottom)

\lemma cover-cauchy {X : PrecoverSpace} {C : Set (Set X)} (Cc : isCauchy C) : FramePres.SCover {framePres} top C
=> cover-basic $byLeft (idp, C, Cc, \lam {V} CV => inP ((V,CV), idp)) \lemma cover-reg {X : PrecoverSpace} {U : Set X} : FramePres.SCover U \lam V => V s<=< U => cover-trans (cover-basic {framePres} {U} {\Sigma (V : Set X) (V s<=< U)}$ byRight $byLeft \lam p => inP ((_, p), idp)) \lam s => cover-inj s idp \lemma cover-empty {X : PrecoverSpace} {U : Set X} (Ue : \Pi {x : X} -> Not (U x)) {J : \Set} {g : J -> Set X} : Cover {framePres} U g => cover-basic$ byRight $byRight$ <=-antisymmetric (\lam Ux => absurd $Ue Ux) bottom-univ \lemma embed_<=< {V U : Set X} (V<=<U : V s<=< U) : embed V Locale.<=< {CoverSpaceLocale X} embed U => \lam _ => Cover.cover-trans1 Cover.cover_top$ cover-basic $byLeft (idp, _, V<=<U, \case __ \with { | byLeft p => inP ((true, _, cover-inj ((embed$ Compl V, rewrite embed_meet $embed<=$ cover-basic $byRight$ byRight $<=-antisymmetric (later \lam (nVx,Vx) => absurd$ nVx Vx) bottom-univ), _, rewrite p $cover-inj () idp) idp), idp) | byRight p => inP ((false, _, rewrite p$ cover-inj () idp), idp)
})

\lemma regular : Locale.isRegular {CoverSpaceLocale X}
=> regular-fromPres \lam U => cover-basic $byRight$ byLeft $later \lam {V} V<=<U => inP ((V, embed_<=< V<=<U), idp) \lemma cover-char {X : StronglyRegularCoverSpace} {U : Set X} {J : \Set} {g : J -> Set X} (c : Cover {framePres} U g) {U' : Set X} (U'<=<U : U' s<=< U) : X.isCauchy \lam V => (V = Compl U') || (\Sigma (j : J) (g j = V)) \elim c | cover-basic (byLeft (p,C,Cc,h)) => cauchy-subset Cc \case h __ \with { | inP r => byRight r } | cover-basic (byRight (byLeft h)) => cauchy-refine (isStronglyRegular U'<=<U) \lam {V'} (inP (V, e, V'<=<V)) => \case \elim e \with { | byLeft p => inP (_, byLeft idp, rewrite p in s<=<_<= V'<=<V) | byRight p => inP (V', \case h (rewrite p in V'<=<V) \with { | inP s => byRight s }, <=-refl) } | cover-basic (byRight (byRight h)) => top-cauchy$ byLeft $<=-antisymmetric (later \lam _ U'x => \case s<=<_<= (rewrite h in U'<=<U) U'x \with { | inP ((),_) }) top-univ | cover-inj j p => cauchy-subset (unfolds in U'<=<U) \case __ \with { | byLeft q => byLeft q | byRight q => byRight$ later (j, p *> inv q)
}
| cover-trans {I} {f} c d =>
\have t => cauchy-glue (isStronglyRegular $cover-char c U'<=<U) {\lam U1 V1 => U1 s<=< Compl U' || (\Sigma (i : I) (U1 s<=< f i) ((V1 = Compl U1) || (\Sigma (j : J) (g j = V1))))} \case __ \with { | inP (W, byLeft e, W'<=<W) => top-cauchy$ byLeft $rewrite e in W'<=<W | inP (W, byRight (i,fi=W), W'<=<W) => cauchy-subset (cover-char (d i) (rewrite (inv fi=W) in W'<=<W)) \lam e => byRight$ later (i, rewrite fi=W W'<=<W, e)
}
\in cauchy-refine t \case __ \with {
| inP (V, W, inP (U, byLeft e, V<=<U), _, Z=VW) => inP (_, byLeft idp, rewrite Z=VW $meet-left <=∘ s<=<_<= V<=<U <=∘ Preorder.=_<= e) | inP (V, W, inP (U, _, V<=<U), byLeft e2, Z=VW) => inP (_, byLeft idp, rewrite Z=VW$ meet-left <=∘ s<=<_<= e2)
| inP (V, W, inP (U, _, V<=<U), byRight (i, V<=<fi, byLeft e), Z=VW) => inP (_, byLeft idp, rewrite (Z=VW,e) \lam (Vx,nVx) => absurd $nVx Vx) | inP (V, W, inP (U, _, V<=<U), byRight (i, V<=<fi, byRight (j,gj=W)), Z=VW) => inP (_, byRight (j,idp), rewrite (Z=VW,gj=W) meet-right) } | cover-proj1 {U1} {U2} p j q => cauchy-refine U'<=<U \lam {V} => \case __ \with { | byLeft r => inP (V, byLeft r, <=-refl) | byRight r => inP (U1, byRight (j,q), rewrite (r *> p) meet-left) } | cover-idemp j p => cauchy-subset (unfolds in U'<=<U) \case __ \with { | byLeft r => byLeft r | byRight r => byRight$ later (j, p *> MeetSemilattice.meet-idemp *> inv r)
}
| cover-comm p j q => cauchy-subset (unfolds in U'<=<U) \case __ \with {
| byLeft r => byLeft r
| byRight r => byRight $later (j, q *> MeetSemilattice.meet-comm *> inv (r *> p)) } | cover-ldistr {W} p c q => \have | t1 => cover-char c (<=<-left U'<=<U$ later $rewrite p meet-right) | t2 : U' s<=< W => <=<-left U'<=<U$ later $rewrite p meet-left \in cauchy-refine (cauchy-inter t1 t2) \case __ \with { | inP (V1, V2, byLeft e1, _, r) => inP (_, byLeft idp, rewrite (r,e1) meet-left) | inP (V1, V2, _, byLeft e2, r) => inP (_, byLeft idp, rewrite (r,e2) meet-right) | inP (_, _, byRight (j,idp), byRight idp, r) => inP (_, byRight (j, idp), rewrite (r, q j)$ Preorder.=_<= MeetSemilattice.meet-comm)
}

\lemma cover-point-char {X : StronglyRegularCoverSpace} {U : Set X} {J : \Set} {g : J -> Set X} (c : Cover {framePres} U g) {x : X} (x<=<U : single x <=< U) : ∃ (j : J) (single x <=< g j)
=> \case s<=<-inter x<=<U \with {
| inP (V,x<=<V,V<=<U) => \case CoverSpace.cauchy-regular-cover (cover-char c V<=<U) x \with {
| inP (W, byLeft p, x<=<W) => absurd $<=<_<= (rewrite p in x<=<W) idp$ s<=<_<= x<=<V idp
| inP (W, byRight (j,p), x<=<W) => inP (j, rewrite p x<=<W)
}
}

\lemma hasWeaklyDensePoints {X : StronglyRegularCoverSpace} (Xd : X.HasWeaklyDensePoints) : HasDensePoints (CoverSpaceLocale X)
=> hasDensePoints-fromPres \lam {U} p => cover-trans cover-reg \lam (V,V<=<U) => cover-empty \lam {x} Vx => \case p {CoverSpaceLocale-unit Xd x} $inP (U, cover-inj () idp, <=<-right (single_<= Vx)$ s<=<_<=< V<=<U) \with {
| inP ((),_)
}

\lemma cover-inh {X : PrecoverSpace} (Xd : X.HasDensePoints) {U : Set X} : Cover {framePres} U {\Sigma (x : X) (U x)} \lam _ => U
=> cover-trans cover-reg \lam (V,V<=<U) =>
cover-trans (cover-ldistr (<=-antisymmetric (meet-univ <=-refl top-univ) meet-left) (cover-cauchy (Xd V<=<U)) \lam _ => idp) \case \elim __ \with {
| (_, (byLeft idp, inP (x,nVx))) => cover-empty $later \lam (Vx,nVx) => nVx Vx | (_, (byRight idp, inP (x,Ux))) => Cover.cover-inj_<= (x,Ux) __.2 } \lemma cover-reg-inh {X : PrecoverSpace} (Xd : X.HasDensePoints) {U : Set X} : Cover {framePres} U {\Sigma (x : X) (single x <=< U)} \lam _ => U => cover-trans cover-reg \lam (V,V<=<U) => cover-trans (cover-inh Xd) \lam (x,Vx) => Cover.cover-inj_<= (x, <=<-right (single_<= Vx)$ s<=<_<=< V<=<U) (s<=<_<= V<=<U)

\lemma hasStronglyDensePoints {X : StronglyRegularCoverSpace} (Xd : X.HasDensePoints) : HasStronglyDensePoints (CoverSpaceLocale X)
=> hasStronglyDensePoints-fromPres \lam a => cover-trans (cover-reg-inh Xd) \lam (x,x<=<a) => cover-inj (inP (CoverSpaceLocale-unit (X.hasDensePoints_hasWeaklyDensePoints Xd) x, inP (a, cover-inj () idp, x<=<a))) idp
}

\func LocalePrecoverSpace (L : Locale) : PrecoverSpace \cowith
| E => CompleteFilter L
| isCauchy C => top <= Join \lam (s : Given C) => points_* s.1
| cauchy-cover t x => \case filter-Join $filter-mono {x} t filter-top \with { | inP ((U,CU),c) => \case filter-Join c \with { | inP ((a,p),xa) => inP (U, CU, p xa) } } | cauchy-top => Join-cond (later (top,top-univ)) <=∘ Join-cond (later (top, idp)) | cauchy-refine p e => p <=∘ Join-univ \lam (U,CU) => \case e CU \with { | inP (V,DV,U<=V) => points_*-mono U<=V <=∘ Join-cond (later (V,DV)) } | cauchy-glue p e => p <=∘ Join-univ \lam (U,CU) => meet-univ <=-refl top-univ <=∘ MeetSemilattice.meet-monotone <=-refl (e CU) <=∘ Join-ldistr>= <=∘ Join-univ \lam (V,DUV) => transport (<= _) points_*_meet$ Join-cond $later (U ∧ V, inP (U, V, CU, DUV, idp)) \where { \lemma points_<=< {a b : L} (p : a L.<=< b) : points^* a s<=< {LocalePrecoverSpace L} points^* b => unfolds$ p <=∘ join-univ (points^*-points_* (\lam xna xa => CompleteFilter.isProper $filter-mono L.eval$ filter-meet xna xa) <=∘ Join-cond (later (_, byLeft idp))) (points-unit <=∘ Join-cond (later (_, byRight idp)))

\lemma cover-cauchy {C : Set L} (p : top <= L.SJoin C) : isCauchy {LocalePrecoverSpace L} \lam U => ∃ (a : C) (points^* a = U)
=> p <=∘ Join-univ \lam (a,Ca) => points-unit <=∘ Join-cond (later (_, inP (a, Ca, idp)))

\lemma single_<=<-char {x : CompleteFilter L} {U : Set (CompleteFilter L)} (x<=<U : single x <=< {LocalePrecoverSpace L} U) : ∃ (a : L) (x a) (points^* a ⊆ U)
=> \have t : top L.<= L.SJoin \lam a => x a -> points^* a ⊆ U => x<=<U <=∘ Join-univ \lam (W,h) => L.SJoin-univ \lam {a} q => L.SJoin-cond \lam xa => q <=∘ later (h (x, (idp, q xa)))
\in \case x.filter-Join $filter-mono t filter-top \with { | inP ((a,h),xa) => inP (a, xa, h xa) } \lemma hasWeaklyDensePoints (Ld : HasDensePoints L) : PrecoverSpace.HasWeaklyDensePoints {LocalePrecoverSpace L} => __ <=∘ Join-univ \lam s => \case s.2 \with { | byLeft e => rewrite e$ Ld <=∘ bottom-univ
| byRight CU => Join-cond $later (s.1,CU) } \lemma hasDensePoints (Ld : HasStronglyDensePoints L) : PrecoverSpace.HasDensePoints {LocalePrecoverSpace L} => __ <=∘ Join-univ \lam (U,CU) => densePoints_cover Ld _ <=∘ Join-univ \lam (inP (x,c)) => Join-cond$ later (U, (CU, inP (x, \case filter-Join c \with {
| inP ((b,p),xb) => p xb
})))
}

\func LocaleCoverSpace {L : Locale} (Lr : L.isRegular) : StronglyRegularCoverSpace \cowith
| PrecoverSpace => LocalePrecoverSpace L
| isStronglyRegular => __ <=∘ Join-univ \lam (U,CU) => Lr _ <=∘ Join-univ \lam (a,a<=<_*U) => points-unit <=∘ Join-cond (later (points^* a, inP (U, CU, <=<-left (points_<=< a<=<_*U) points-counit)))

\func LocaleCoverSpaceFunctor : Functor LocaleCat PrecoverSpaceCat \cowith
| F => LocalePrecoverSpace
| Func f => \new PrecoverMap {
| func => PointsSpaceFunctor.Func f
| func-cover c => func-top>= <=∘ func-<= {f} c <=∘ func-Join>= <=∘ Join-univ \lam (V,DV) => func-Join>= <=∘ Join-univ \lam (b,p) => points^*-points_* (\lam c => later $p$ later c) <=∘ Join-cond (later (_, inP (V, DV, idp)))
}
| Func-id => idp
| Func-o => idp

\func LocaleCoverSpaceFunctor-fullyFaithful {L M : Locale} (Ld : HasDensePoints L) (Mr : M.isRegular) : Equiv (Func {LocaleCoverSpaceFunctor} {L} {M})
=> Equiv.fromInjSurj _
(\have r {f g : FrameHom M L} (p : Func f = Func g) {a : M} : f a <= g a => later $f.func-<= (Mr a) <=∘ func-Join>= <=∘ Join-univ \lam s => meet-univ <=-refl top-univ <=∘ MeetSemilattice.meet-monotone <=-refl (func-top>= <=∘ g.func-<= s.2 <=∘ g.func-join>=) <=∘ ldistr>= <=∘ join-univ (hasDensePoints-char.1 Ld (\lam {x} c => CompleteFilter.isProper$
filter-mono (func-meet>= <=∘ func-<= Locale.eval <=∘ g.func-bottom>=) $filter-meet (filter-mono meet-right c) (propExt.dir (pmap {PrecoverMap _ _} (__ x s.1) p)$ filter-mono meet-left c)) <=∘ bottom-univ) meet-right
\in \lam p => exts \lam a => <=-antisymmetric (r p) $r$ inv p)
\lam f => inP (frameHom f, exts \lam (x : CompleteFilter) => exts \lam a => ext (\case filter-Join __ \with {
| inP ((b,b<=<a),r) => \case filter-Join r \with {
| inP ((c,q),xc) => filter-mono (Topology.Locale.<=<_<= b<=<a) (q xc)
}
}, \lam fxa => \case filter-Join $filter-mono (Mr a) fxa \with { | inP ((b,b<=<a),fxb) => \case filter-Join$ filter-mono (Mr b) fxb \with {
| inP ((b',b'<=<b),fxb') =>
\have t => func-cover {f} $LocalePrecoverSpace.cover-cauchy {M} {\lam x => (x = M.neg b') || (x = b)}$ b'<=<b <=∘ join-univ (M.SJoin-cond $byLeft idp) (M.SJoin-cond$ byRight idp)
\in \case filter-Join $filter-mono {x} t filter-top \with { | inP ((_, inP (_, inP (_, byLeft idp, idp), idp)), xe) => absurd \case filter-Join xe \with { | inP ((c,q),xc) => CompleteFilter.isProper$ filter-mono M.eval $filter-meet (q xc) fxb' } | inP ((_, inP (_, inP (_, byRight idp, idp), idp)), xe) => \case filter-Join xe \with { | inP ((c,q),xc) => filter-mono (Join-cond (later (b,b<=<a))) xe } } } })) \where { \protected \func frameHom (f : PrecoverMap (LocalePrecoverSpace L) (LocalePrecoverSpace M)) : FrameHom M L \cowith | func a => Join \lam (s : \Sigma (b : M) (b M.<=< a)) => points_*$ f ^-1 points^* s.1
| func-<= p => Join-univ \lam (b,b<=<x) => Join-cond $later (b, <=<-left b<=<x p) | func-top>= => Join-cond (later (top, \lam _ => filter-top)) <=∘ Join-cond (later (top, <=<_top)) | func-meet>= => Locale.Join-distr>= <=∘ Join-univ \lam ((b,b<=<x),(c,c<=<y)) => Preorder.=_<= (inv$ pmap points_* (pmap (f ^-1) points^*_meet *> func-meet {^-1_FrameHom f} {points^* b} {points^* c}) *> points_*_meet) <=∘ Join-cond (later (b ∧ c , <=<_meet b<=<x c<=<y))
| func-Join>= {J} {g} => Join-univ \lam (b,p) =>
\have Mc : top <= M.SJoin (\lam c => (c = M.neg b) || (\Sigma (j : J) (c M.<=< g j)))
=> p <=∘ join-univ (M.SJoin-cond $byLeft idp) (Join-univ \lam j => Mr (g j) <=∘ M.SJoin-univ \lam x<=<gj => M.SJoin-cond$ byRight $later (j,x<=<gj)) \in meet-univ <=-refl top-univ <=∘ L.meet-monotone (L.<=-refl {points_*$ f ^-1 points^* b}) (f.func-cover (LocalePrecoverSpace.cover-cauchy Mc)) <=∘ Join-ldistr>= <=∘ Join-univ \case \elim __ \with {
| (_, inP (_, inP (_, byLeft idp, idp), idp)) => points_*_meet>= <=∘ points_*-mono (later \lam (fxb,fxnb) => absurd $CompleteFilter.isProper$ filter-mono M.eval $filter-meet fxnb fxb) <=∘ Ld <=∘ bottom-univ | (_, inP (_, inP (a, byRight (j,a<=<gj), idp), idp)) => meet-right <=∘ L.Join-cond (later (a,a<=<gj)) {\lam s => points_* (f ^-1 points^* s.1)} <=∘ Join-cond j } } \func CoverSpaceLocale-unit {X : StronglyRegularCoverSpace} (Xo : X.HasWeaklyDensePoints) : PrecoverMap X (LocaleCoverSpace {CoverSpaceLocale X} CoverSpaceLocale.regular) \cowith | func x => framePres-point (\lam U => single x <=< U) (inP (top, <=<_top)) (\lam {a} {b} => (\lam p => (<=<-left p meet-left, <=<-left p meet-right), \lam (p,q) => <=<_meet-same p q)) (\lam b x<=<U => CoverSpaceLocale.cover-point-char (cover-basic b) x<=<U) | func-cover Dc => Xo$ cauchy-refine (isRegular $CoverSpaceLocale.cover-char (Dc ()) <=<_top) \lam {V} => \case __ \with { | inP (_, byLeft idp, V<=<U) => inP (bottom, byLeft idp, <=<_<= V<=<U <=∘ \lam t => absurd$ t ())
| inP (U, byRight (((W,DW),_,q),idp), V<=<U) => inP (_, byRight $inP (W, DW, idp), \lam Ux => \case CoverSpaceLocale.cover-point-char q$ <=<-right (single_<= Ux) V<=<U \with {
| inP (((W,p),U'',WU''),x<=<U'') => p $inP$ later (U'', WU'', x<=<U'')
})
}
\where {
\open PresentedFrame

\lemma isDense (Xd : X.HasDensePoints) : PrecoverMap.IsDense {CoverSpaceLocale-unit $X.hasDensePoints_hasWeaklyDensePoints Xd} => dense-char.2$ later \lam {y} {U} y<=<U => \case filter-Join {y} {_} {\lam s => points_* s.1} $filter-mono {y} (<=<_single.1 y<=<U) filter-top \with { | inP ((W,h),yW) => \case filter-Join yW \with { | inP ((V,p),yV) => \case filter-Join {y} {_} {\lam s => embed s.1}$ transport y element_join yV \with {
| inP ((V',VV'),yV') => \case filter-Join {y} {_} {\lam _ => embed V'} $filter-mono {y} {embed V'} {Join {CoverSpaceLocale X} {\Sigma (x : X) (single x <=< V')} \lam _ => embed V'} (embed<=$ cover-trans (CoverSpaceLocale.cover-reg-inh Xd) \lam s => cover-inj (V', later $cover-inj (s, V', cover-inj () idp) idp) idp) yV' \with { | inP ((x,x<=<V'),_) => inP (x, h (p yV)$ p $inP$ later (V', VV', x<=<V'))
}
}
}
}

\lemma isEmbedding (Xd : X.HasWeaklyDensePoints) : PrecoverMap.IsEmbedding {CoverSpaceLocale-unit Xd}
=> \lam {C} Cc _ => Cover.cover-trans1 (Cover.cover_<= top-univ) $cover-trans (CoverSpaceLocale.cover-cauchy Cc) \lam (U,CU) => cover-inj ((points^*$ embed U, inP (U, CU, \lam (inP (V,V<=U,x<=<V)) => \case CoverSpaceLocale.cover-point-char V<=U x<=<V \with {
| inP (_,x<=<U) => <=<_<= x<=<U idp
})), _, cover-inj ((embed U, <=-refl), _, cover-inj () idp) idp) idp

\lemma isDenseEmbedding (Xd : X.HasDensePoints) : PrecoverMap.IsDenseEmbedding {CoverSpaceLocale-unit $X.hasDensePoints_hasWeaklyDensePoints Xd} => (isDense Xd, isEmbedding (X.hasDensePoints_hasWeaklyDensePoints Xd)) } \func LocaleCompleteCoverSpace {L : Locale} (Lr : L.isRegular) : CompleteCoverSpace \cowith | CoverSpace => LocaleCoverSpace Lr | isSeparatedCoverSpace {x} {y} sh => exts \lam a => \have | sh1 => separated-char {\this} 7 4 sh | sh2 => separated-char 2 4$ inv $separated-char {\this} 7 2 sh \in ext (\lam xa => \case filter-Join$ filter-mono (Lr a) xa \with {
| inP ((b,b<=<a),xb) => sh1 $<=<-right (\lam q => rewriteI q xb)$ s<=<_<=< $points_<=< b<=<a }, \lam ya => \case filter-Join$ filter-mono (Lr a) ya \with {
| inP ((b,b<=<a),xb) => sh2 $<=<-right (\lam q => rewriteI q xb)$ s<=<_<=< $points_<=< b<=<a }) | isComplete F => inP (makeFilter F, \lam {V} F<=<V => \case single_<=<-char F<=<V \with { | inP (a, inP (b,b<=<a,p), q) => filter-mono q$ filter-mono (points^*-mono $Topology.Locale.<=<_<= b<=<a) p }) \where { \open SeparatedCoverSpace \func makeFilter (F : CauchyFilter (LocaleCoverSpace Lr)) : CompleteFilter L \cowith | F a => ∃ (b : L) (b L.<=< a) (F (points^* b)) | filter-mono a<=b (inP (c,c<=<a,Fc)) => inP (c, <=<-left c<=<a a<=b, Fc) | filter-top => inP (top, <=<_top, rewrite points^*_top filter-top) | filter-meet (inP (a',a'<=<a,Fa')) (inP (b',b'<=<b,Fb')) => inP (a' ∧ b', <=<_meet a'<=<a b'<=<b, rewrite points^*_meet$ filter-meet Fa' Fb')
| filter-Join {J} {g} (inP (b,b<=<Jg,Fb)) => \case F.isCauchyFilter {\lam U => (U = points^* (L.neg b)) || (\Sigma (j : J) (a : L) (a L.<=< g j) (U = points^* a))} (b<=<Jg <=∘ join-univ (points-unit <=∘ Join-cond (later (_, byLeft idp))) (Join-univ \lam j => Lr (g j) <=∘ L.SJoin-univ \lam {x} x<=<gj => points-unit <=∘ Join-cond (later (_, byRight (j, x, x<=<gj, idp))))) \with {
| inP (_, byLeft idp, p) => absurd \case F.isProper (filter-meet p Fb) \with {
| inP (x,(xnb,xb)) => CompleteFilter.isProper \$ filter-mono L.eval (filter-meet xnb xb)
}
| inP (_, byRight (j,a,a<=<gj,idp), p) => inP (j, inP (a, a<=<gj, p))
}
}`