\import Algebra.Domain \import Algebra.Field \import Algebra.Group \import Algebra.Group.Category \import Algebra.Linear.Matrix \import Algebra.Linear.Matrix.Smith \import Algebra.Meta \import Algebra.Module \import Algebra.Module.Category \import Algebra.Module.FinModule \import Algebra.Module.LinearMap \import Algebra.Monoid \import Algebra.Monoid.Category \import Algebra.Monoid.GCD \import Algebra.Pointed \import Algebra.Pointed.Category \import Algebra.Ring \import Algebra.Semiring \import Arith.Nat \import Category \import Data.Array \import Data.Or \import Equiv \import Function (Image) \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Order.Lattice \import Order.LinearOrder \import Order.PartialOrder \import Order.StrictOrder \import Paths \import Paths.Meta \import Relation.Equivalence \import Set \import Set.Fin \open LModule \hiding (count) \class VectorSpace \extends LModule { \override R : DiscreteField } \class FinVectorSpace \extends VectorSpace, FinModule \func rank {R : SmithDomain} {n m : Nat} (A : Matrix R n m) : Nat => firstNonZero (rank-array A).1 \where { \func firstNonZero {R : CRing.Dec} (l : Array (DivQuotient R)) : Nat => \case find (\lam a => dec_decide (R.divQuotient_dec0 a)) l \with { | inl s => s.1 | inr _ => l.len } \lemma firstNonZero_<= {R : CRing.Dec} {l : Array (DivQuotient R)} (c : \Pi {i j : Fin l.len} -> i NatSemiring.<= j -> l i = in~ 0 -> l j = in~ 0) {k : Fin l.len} : firstNonZero l <= k <-> l k = in~ 0 => unfold firstNonZero $ mcases \with { | inl s => (\lam q => c q s.2, \lam q => \case LinearOrder.dec<_<= k s.1 \with { | inl r => absurd $ s.3 r q | inr r => r }) | inr c => (\lam q => absurd $ linarith (fin_< k), \lam q => absurd $ c q) } \lemma firstNonZero<=len {R : CRing.Dec} {l : Array (DivQuotient R)} : firstNonZero l <= l.len => unfold firstNonZero $ mcases \with { | inl s => LinearOrder.<_<= (fin_< s.1) | inr _ => <=-refl } \lemma rank-array {R : SmithDomain} {n m : Nat} (A : Matrix R n m) : \Sigma (d : Array (DivQuotient R) (n ∧ m)) (∃ (B : Matrix R n m) (A M~ B) (IsSmith B) ∀ j (d j = in~ (B (fin-inc_<= meet-left j) (fin-inc_<= meet-right j)))) \level \lam (d, inP (B,A~B,Bs,q)) (d', inP (B',A~B',B's,q')) => ext $ exts \lam j => q j *> ~-pequiv (smith-unique.smith-div-equiv B's Bs (~-transitive (~-symmetric A~B') A~B) _ _) *> inv (q' j) => \case R.toSmith A \with { | inP (B,Bs,A~B) => (\lam j => in~ $ B (fin-inc_<= meet-left j) (fin-inc_<= meet-right j), inP (B, A~B, Bs, \lam j => idp)) } \lemma rank-array_M~ {R : SmithDomain} {n m : Nat} {A B : Matrix R n m} (A~B : A M~ B) : (rank-array A).1 = (rank-array B).1 => \case (rank-array A).2, (rank-array B).2 \with { | inP (A',A~A',A's,d), inP (B',B~B',B's,e) => exts \lam j => d j *> ~-pequiv (smith-unique.smith-div-equiv B's A's (~-symmetric B~B' `~-transitive` ~-symmetric A~B `~-transitive` A~A') _ _) *> inv (e j) } \lemma rank_M~ {R : SmithDomain} {n m : Nat} {A B : Matrix R n m} (A~B : A M~ B) : rank A = rank B => pmap firstNonZero (rank-array_M~ A~B) \lemma rank-array_smith {R : SmithDomain} {n m : Nat} {A : Matrix R n m} (As : IsSmith A) : (rank-array A).1 = mkArray \lam (j : Fin (n ∧ m)) => DivQuotient.inD (A (fin-inc_<= meet-left j) (fin-inc_<= meet-right j)) => \case (rank-array A).2 \with { | inP (B,A~B,Bs,e) => exts \lam j => e j *> ~-pequiv (smith-unique.smith-div-equiv As Bs A~B _ _) } \lemma rank_smith {R : SmithDomain} {n m : Nat} {A : Matrix R n m} (As : IsSmith A) : rank A = firstNonZero \lam (j : Fin (n ∧ m)) => DivQuotient.inD (A (fin-inc_<= meet-left j) (fin-inc_<= meet-right j)) => pmap firstNonZero (rank-array_smith As) \lemma rank_transpose {R : SmithDomain} {n m : Nat} {A : Matrix R n m} : rank (transpose A) = rank A => \case (rank-array A).2 \with { | inP (B,A~B,Bs,_) => rank_M~ (M~.transposed A~B) *> rank_smith (IsSmith.transposed Bs) *> pmap firstNonZero (exts (NatSemiring.meet-comm, \lam j => pmap2 (\lam x y => DivQuotient.inD (B x y)) (fin_nat-inj $ toFin=id *> inv fin_transport *> inv toFin=id) (fin_nat-inj $ toFin=id *> inv fin_transport *> inv toFin=id))) *> inv (rank_smith Bs) *> rank_M~ (~-symmetric A~B) } \lemma rank_<= {R : SmithDomain} {n m : Nat} {A : Matrix R n m} {k : Nat} (p : k < n) (q : k < m) : rank A <= k <-> ((rank-array A).1 (toFin k $ LinearOrder.<_meet-univ p q) = in~ 0) => \case (rank-array A).2 \with { | inP (B,A~B,Bs,e) => transport (\lam x => _ <= x <-> _) toFin=id $ firstNonZero_<= (\lam {i} {j} s c => \case IsSmith.smith-diag Bs (toFin=id *> inv toFin=id) (transport2 (<=) (inv toFin=id) (inv toFin=id) s) \with { | inP d => e j *> pmap in~ (R.ldiv=0 d $ R.divQuotient_un0 $ inv (e i) *> c) }) {toFin k (LinearOrder.<_meet-univ p q)} } \lemma rank_smith_<= {R : SmithDomain} {n m : Nat} {A : Matrix R n m} (As : IsSmith A) {k : Nat} (p : k < n) (q : k < m) : rank A <= k <-> (A (toFin k p) (toFin k q) = 0) => <->trans (rank_<= p q) $ rewrite (path \lam i => rank-array_smith As i (toFin k (LinearOrder.<_meet-univ p q))) (\lam c => pmap2 (\lam i => A i) (later $ fin_nat-inj $ toFin=id *> inv toFin=id *> inv toFin=id) (later $ fin_nat-inj $ toFin=id *> inv toFin=id *> inv toFin=id) *> R.divQuotient_un0 c, \lam c => pmap in~ (pmap2 (\lam i => A i) (later $ fin_nat-inj $ toFin=id *> toFin=id *> inv toFin=id) (later $ fin_nat-inj $ toFin=id *> toFin=id *> inv toFin=id) *> c)) } \lemma rank<=rows {R : SmithDomain} {n m : Nat} {A : Matrix R n m} : rank A <= n => rank.firstNonZero<=len <=∘ meet-left \lemma rank<=columns {R : SmithDomain} {n m : Nat} {A : Matrix R n m} : rank A <= m => rank.firstNonZero<=len <=∘ meet-right \lemma smith-bases {R : SmithDomain} {U V : LModule R} {lu : Array U} (bu : U.IsBasis lu) {lv : Array V} (bv : V.IsBasis lv) (f : LinearMap U V) : ∃ (lu' : Array U lu.len) (U.IsBasis lu') (lv' : Array V lv.len) (bv' : V.IsBasis lv') (d : Array R lu.len) (\Pi (j : Fin lu.len) -> f (lu' j) = d j *c fit V.zro lv' j) (\Pi (j : Fin lu.len) -> (d j = 0) <-> rank (toMatrix lu' bv' f) <= j) => \have | (inP (B, Bs, A~B)) => R.toSmith (toMatrix lu bv f) | (inP Bs2) => IsSmith.smith-diag-func Bs | (inP (lu',lv',bu',bv',p)) => M~_toLinearMap bu bv A~B | q : f = toLinearMap bu' lv' B => inv (ret_f {matrix-equiv bu bv} f) *> p \in inP (lu', bu', lv', bv', \lam j => \case LinearOrder.dec<_<= j lv.len \with { | inl p => B j (toFin j p) | inr _ => zro }, \lam j => path (\lam i => q i (lu' j)) *> LinearMap.toLinearMap-basis bu' lv' *> mcases \with { | inl j<lv => V.BigSum-unique {\lam k => B j k *c lv' k} (toFin j j<lv) (\lam k j/=k => pmap (`*c _) (Bs.1 \lam j=k => j/=k $ fin_nat-inj $ toFin=id *> j=k) *> V.*c_zro-left) *> pmap (_ *c) (inv $ fit_< lv' j<lv) | inr lv<=j => V.BigSum_zro (\lam k => pmap (`*c _) (later $ Bs.1 \lam j=k => linarith (fin_< k)) *> V.*c_zro-left) *> inv V.*c_zro-left }, \lam j => mcases \with { | inl j<lv => \have r => rank.rank_smith_<= Bs (fin_< j) j<lv \in rewrite (Equiv.adjointInv {matrix-equiv bu' bv'} q) (\lam c => r.2 $ pmap (B __ _) toFin=fin *> c, \lam c => pmap (B __ _) (inv toFin=fin) *> r.1 c) | inr lv<=j => (\lam _ => rank<=columns <=∘ lv<=j, \lam _ => idp) }) \where { \open LinearMap \open Monoid \lemma M~_toLinearMap {R : Ring} {U V : LModule R} {lu : Array U} {lv : Array V} (bu : U.IsBasis lu) (bv : V.IsBasis lv) {A B : Matrix R lu.len lv.len} (A~B : A M~ B) : ∃ (lu' : Array U lu.len) (lv' : Array V lv.len) (bu' : U.IsBasis lu') (bv' : V.IsBasis lv') (toLinearMap bu lv A = toLinearMap bu' lv' B) => \let | (inP (C : Inv, D : Inv, A=CBD)) => ~-symmetric A~B | t => pmap (toLinearMap bu lv) A=CBD *> toLinearMap_* (C.val MatrixRing.product B) D.val bu bv bv *> pmap (_ ∘) (toLinearMap_* C.val B bu bu bv) *> pmap (_ ∘) (change-basis-right (toLinearMapIso bu bu C) bu bv B) *> change-basis-left (toLinearMap bv lv D.val) (iso-basis (Iso.reverse {toLinearMapIso bu bu C}) bu) bv B \in inP (_, _, _, iso-basis (toLinearMapIso bv bv D) bv, t) } \instance image-fin {R : SmithDomain} {U V : FinModule R} (f : LinearMap U V) : FinModule | LModule => ImageLModule f | isFinModule => \case U.isFinModule, V.isFinModule \with { | inP (lu,bu), inP (lv,bv) => TruncP.map (basis f bu bv) \lam s => (s.1,s.2) } \where { \protected \lemma basis {U V : LModule R} (f : LinearMap U V) {lu' : Array U} (bu' : U.IsBasis lu') {lv' : Array V} (bv' : V.IsBasis lv') : ∃ (l : Array (Image f)) (IsBasis {ImageLModule f} l) (l.len = rank (LinearMap.toMatrix lu' bv' f)) => \let | (inP (lu, bu, lv, bv, d, g, d0)) => smith-bases bu' bv' f | r => rank (LinearMap.toMatrix lu bv f) | lic j : Image f => (f (take r lu rank<=rows j), inP (_, idp)) \in inP (lic, (\lam c p j => R.nonZero-right (\lam c => NatSemiring.<-irreflexive $ fin_< j <∘l (rewrite toFin=id in (d0 _).1 c)) $ V.independent-subset {lv} bv.1 rank<=columns (\lam i => c i * d (fin-inc_<= rank<=rows i)) (pmap V.BigSum (exts \lam j => *c-assoc *> pmap (_ *c) (inv $ pmap f take-index *> g (fin-inc_<= rank<=rows j) *> pmap (_ *c) (fit_< lv (later $ rewrite toFin=id $ fin_< j <∘l rank<=columns) *> pmap lv (fin_nat-inj $ later $ toFin=id *> toFin=id *> inv toFin=id)))) *> inv (AddMonoidHom.func-BigSum {ImageLModuleRightHom f}) *> pmap __.1 p) j, \lam v => \have | (inP (u,fu=v)) => v.2 | (inP (c,s)) => bu.2 u \in inP (mkArray \lam j => c (fin-inc_<= rank<=rows j), ext $ inv fu=v *> pmap f s *> f.func-BigSum *> inv (V.BigSum-subset {_} {\lam j => f (c j *c lu j)} rank<=rows (\lam j => pmap (_ *c f __) take-index *> inv func-*c) \lam j r<=j => func-*c *> pmap (_ *c) (g j *> pmap (`*c _) ((d0 j).2 r<=j) *> *c_zro-left) *> *c_zro-right) *> inv (AddMonoidHom.func-BigSum {ImageLModuleRightHom f}))), rank.rank_M~ $ LinearMap.change-basis_M~ f bu bu' bv bv') \lemma dimension_rank {f : LinearMap U V} {lu : Array U} (bu : U.IsBasis lu) {lv : Array V} (bv : V.IsBasis lv) : FinModule.dimension (image-fin f) = rank (LinearMap.toMatrix lu bv f) => \case basis f bu bv \with { | inP (li,bi,p) => FinModule.dimension-unique bi *> p } } \instance kernel-fin {R : SmithDomain} {U V : FinModule R} (f : LinearMap U V) : FinModule | LModule => KerLModule f | isFinModule => \case U.isFinModule, V.isFinModule \with { | inP (_,bu'), inP (_,bv') => \case smith-bases bu' bv' f \with { | inP (lu : Array, bu, lv : Array, bv, d, g, d0) => \have | KerFin : FinSet (\Sigma (j : Fin lu.len) (d j = 0)) => SigmaFin (FinFin lu.len) (\lam j => DecFin (decideEq (d j) 0)) | kb : LModule.IsBasisSet {KerLModule f} (\lam s => (lu s.1, g s.1 *> pmap (`*c _) s.2 *> V.*c_zro-left)) => (LinearMap.IsIndependentSet_func {KerLModuleHom f} $ LModule.IsIndependentSet-inj (\lam p => ext p) ((U.IsIndependent<->IsIndependentSet {lu}).1 bu.1), \lam x => inP (map (\lam s => (U.basis-split bu x.1 s.1, s)) (filter0 d), ext $ U.basis-split-char {_} {bu} *> filter0_BigSum d (\lam j => basis-split bu x.1 j *c lu j) (\lam j dj/=0 => pmap (`*c _) ( \case LinearOrder.dec<_<= j lv.len \with { | inl j<lv => Domain.nonZero-right dj/=0 $ inv (fit_<' (\lam j => basis-split bu x.1 j R.* d j) j<lv) *> bv.1 (fit zro \lam j => U.basis-split bu x.1 j * d j) (path (\lam i => V.BigSum \lam j => fit_map (`*c lv j) {zro} V.*c_zro-left {_} {\lam j => basis-split bu x.1 j R.* d j} i j) *> fit-transpose (\lam j k => basis-split bu x.1 k * d k *c lv j) *> pmap V.BigSum (exts \lam k => later (\case LinearOrder.dec<_<= k lv.len \with { | inl k<lv => fit_< (\lam i => basis-split bu x.1 k * d k *c lv i) k<lv *> pmap (_ *c) (inv (fit_< lv k<lv)) | inr lv<=k => fit_>= (\lam i => basis-split bu x.1 k * d k *c lv i) lv<=k *> inv (pmap (`*c _) (pmap (_ *) ((d0 k).2 $ rank<=columns <=∘ lv<=k) *> R.zro_*-right) *> V.*c_zro-left) }) *> *c-assoc *> inv (func-*c *> pmap (_ *c) (g k))) *> inv (pmap f (U.basis-split-char {_} {bu}) *> f.func-BigSum) *> x.2) (toFin j j<lv) | inr lv<=j => absurd $ dj/=0 ((d0 j).2 $ rank<=columns <=∘ lv<=j) }) *> *c_zro-left) *> inv (AddMonoidHom.func-BigSum {KerLModuleHom f}))) \in basisSet_basis KerFin kb } } \where { \func filter0 {R : AddGroup.Dec} (ds : Array R) : Array (\Sigma (j : Fin ds.len) (ds j = 0)) \elim ds | nil => nil | d :: ds => \case decideEq d 0 \with { | yes d=0 => (0,d=0) :: map (later \lam s => (suc s.1, s.2)) (filter0 ds) | no d/=0 => map (later \lam s => (suc s.1, s.2)) (filter0 ds) } \lemma filter0_BigSum {R : AddGroup.Dec} {A : AddMonoid} (ds : Array R) (f : Fin ds.len -> A) (p : \Pi (j : Fin ds.len) -> ds j /= 0 -> f j = 0) : A.BigSum f = A.BigSum (\lam j => f (filter0 ds j).1) \elim ds | nil => idp | d :: ds => mcases \with { | yes d=0 => pmap (_ +) (filter0_BigSum ds (\lam j => f (suc j)) \lam j => p (suc j)) | no d/=0 => pmap2 (+) (p 0 d/=0) (filter0_BigSum ds (\lam j => f (suc j)) \lam j => p (suc j)) *> zro-left } } \func dependency-dec {R : SmithDomain} {U : FinModule R} (l : Array U) : Or (U.IsDependent l) (U.IsIndependent l) => \let K => kernel-fin {R} {ArrayFinModule l.len} (arrayLinearMap l) \in cases (FinModule.dimension {R} K arg addPath) \with { | 0, p => inr $ arrayLinearMap.inj-char.1 $ (kernel=0<->inj {arrayLinearMap l}).2 (FinModule.dimension=0.1 p) | suc n, p => inl \case rewrite p in FinModule.dimension-char \with { | inP (l',l'b) => inP \let | (a,p) => l' 0 | (j,q) => array/= {R} {l.len} \lam q => zro/=ide $ LModule.independent-nonZero {K} {l'} l'b.1 (ext q) \in (a, p, j, q) } }