\import Algebra.Meta \import Algebra.Monoid \import Algebra.Ordered \import Algebra.Ring \import Analysis.FuncLimit \import Analysis.Series \import Arith.Nat \import Arith.Rat \import Arith.Real \import Arith.Real.Field \import Combinatorics.Factorial \import Data.Or \import Function.Meta \import Logic \import Logic.Meta \import Meta \import Order.LinearOrder \import Order.PartialOrder \import Order.StrictOrder \import Paths \import Paths.Meta \import Set.Subset \import Topology.CoverSpace.Complete \import Topology.CoverSpace.Product \import Topology.NormedAbGroup \import Topology.NormedAbGroup.Real \import Topology.NormedAbGroup.Real.Functions \import Topology.NormedRing \import Topology.TopSpace \open Monoid(pow) \open LinearlyOrderedSemiring \func powerSeries {X : PseudoNormedRing} (cs : Nat -> X) (n : Nat) (x : X) => cs n * pow x n \lemma powerSeries_0 {X : PseudoNormedRing} {cs : Nat -> X} : IsConvSeries (powerSeries cs __ 0) => series-shift-conv.2 $ transport IsConvSeries (ext \lam n => inv $ pmap (_ *) Ring.zro_*-right *> Ring.zro_*-right) (seriesSum-conv zeroSeries-sum) \func convRadius {X : PseudoNormedRing} (cs : Nat -> X) : LowerReal \cowith | L a => ∃ (b : Real) (b.L a) (IsConvSeries \lam j => norm (cs j) * pow b j) | L-inh => inP (-1, inP (0, idp, powerSeries_0)) | L-closed (inP (b,q<b,h)) q'<q => inP (b, L-closed q<b q'<q, h) | L-rounded {a} (inP (b,a<b,h)) => \case L-rounded a<b \with { | inP (a',a'<b,a<a') => inP (a', inP (b, a'<b, h), a<a') } \lemma convRadius-conv {X : PseudoNormedRing} (cs : Nat -> X) {x : Real} (x>=0 : 0 <= x) (p : x <LU convRadius cs) : IsConvSeries (\lam j => norm (cs j) * pow x j) \elim p | inP (a, |x|<a, inP (b,a<b,cc)) => series_<= (\lam j => <=_*_positive_positive norm>=0 (pow>=0 x>=0)) (\lam j => <=_*_positive-right norm>=0 (pow_<=-monotone x>=0 $ LinearOrder.<_<= $ real_<_U.2 |x|<a <∘ real_<_L.2 a<b)) cc \lemma convRadius-absConv {X : PseudoNormedRing} (cs : Nat -> X) {x : X} (p : norm x <LU convRadius cs) : IsAbsConvSeries (powerSeries cs __ x) => series_<= (\lam j => norm>=0) (\lam j => norm_*_<= <=∘ later (<=_*_positive-right norm>=0 norm_<=_pow)) (convRadius-conv cs norm>=0 p) \lemma convRadius-div {X : PseudoValuedRing} (cs : Nat -> X) {x : X} (p : IsConvSeries (powerSeries cs __ x)) : norm x <=L convRadius cs => \lam {a} a<|x| => \case LinearOrder.dec<_<= a 0, L-rounded a<|x| \with { | inl a<0, _ => inP (0, a<0, powerSeries_0) | inr a>=0, inP (b,b<|x|,a<b) => \have |x|>0 => rat_real_<=.1 a>=0 <∘r real_<_L.2 a<|x| \in inP (b, a<b, transport IsConvSeries {\lam j => norm (powerSeries cs j x) * pow (Real.fromRat b * RealField.pinv |x|>0) j} (ext \lam j => pmap2 (*) norm_* CMonoid.pow_*-comm *> *-assoc *> pmap (_ *) (pmap (_ *) *-comm *> inv *-assoc *> pmap (`* _) (pmap (`* _) norm_pow *> inv CMonoid.pow_*-comm *> pmap (pow __ j) (RealField.pinv-right |x|>0) *> Monoid.pow_ide) *> ide-left)) $ absConv-isConv $ series_*_lim (cont-limit (series-limit p) norm-metric) $ geometric-series-absConv $ later $ rewrite (RealField.abs-ofPos $ <=_*_positive_positive (rat_real_<=.1 $ a>=0 <=∘ LinearOrder.<_<= a<b) $ LinearOrder.<_<= $ OrderedField.pinv>0 |x|>0) $ rewrite OrderedField.pinv-right in <_*_positive-left (real_<_L.2 b<|x|) (OrderedField.pinv>0 |x|>0)) } \type IsPowerSeriesConv {X : PseudoNormedRing} (cs : Nat -> X) : \Prop => \Pi {a : Real} -> 0 <= a -> IsConvSeries (\lam n => norm (cs n) * pow a n) \lemma powerSeriesConv-absConv {X : PseudoNormedRing} {cs : Nat -> X} (p : IsPowerSeriesConv cs) {x : X} : IsAbsConvSeries (powerSeries cs __ x) => series_<= {_} {\lam j => norm (cs j) * pow (norm x) j} (\lam j => norm>=0) (\lam j => norm_*_<= <=∘ <=_*_positive-right norm>=0 norm_<=_pow) (p norm>=0) \lemma powerSeriesConv-funcConv {X : PseudoNormedRing} {cs : Nat -> X} (p : IsPowerSeriesConv cs) : IsFuncConvergent \lam n x => partialSum (powerSeries cs __ x) n => funcCovergent-metric-char (partialSum-cover \lam j => *-locally-uniform CoverMap.∘ ProductCoverSpace.tuple (CoverMap.const (cs j)) (pow-cover j)) \lam {eps} eps>0 => X.makeCauchy $ X.uniform-refine (X.makeUniform eps>0) \lam {_} (inP (x,idp)) => \case MTest {\Sigma (y : X) (norm y < norm x + eps)} (\lam n s => powerSeries cs n s.1) (\lam n => norm (cs n) * pow (norm x + eps) n) (\lam n s => norm_*_<= <=∘ <=_*_positive-right norm>=0 (norm_<=_pow <=∘ pow_<=-monotone norm>=0 (LinearOrder.<_<= s.2))) (p $ linarith norm>=0) (X.makeUniform $ half>0 eps>0) \with { | inP (N,h) => inP (_, inP $ later (N, \lam {y} d N<=n => \case h (y, linarith $ norm_-right <∘r (rewrite norm-dist in d)) \with { | inP (_, inP (z,idp), g) => halving (g N<=n) (g <=-refl) }), <=-refl) } \lemma powerSeries-unbounded-conv {X : PseudoValuedRing} (Xu : X.IsUnbounded) {cs : Nat -> X} (Sc : \Pi (x : X) -> IsConvSeries (powerSeries cs __ x)) : IsPowerSeriesConv cs => \lam {a} a>=0 => \case Real.natBounded {a} \with { | inP (B,a<B) => \case Xu B \with { | inP (x,B<|x|) => convRadius-conv cs a>=0 $ <LU-transitive (inP (B, a<B, real_<_L.1 B<|x|)) $ convRadius-div cs (Sc x) } } \lemma power-ratio-test {c b : Series Real} (c>=0 : \Pi (j : Nat) -> 0 <= c j) (bp : \Pi (n : Nat) -> c (suc n) <= c n * b n) {l : Real} (bl : RealNormed.IsLimit b l) {x : Real} (x>=0 : 0 <= x) (lx : l * x < 1) : IsConvSeries \lam j => c j * pow x j => absConv-isConv $ ratio-test (\lam j => b j * x) (\lam j => later $ rewrite (RealField.abs-ofPos $ <=_*_positive_positive (c>=0 (suc j)) (pow>=0 {_} {_} {suc j} x>=0), RealField.abs-ofPos (<=_*_positive_positive (c>=0 j) (pow>=0 x>=0))) $ <=_*_positive-left (bp j) (pow>=0 {_} {_} {suc j} x>=0) <=∘ Preorder.=_<= (equation {CRing})) lx $ cont-limit bl $ RealField.*-cover CoverMap.∘ ProductCoverSpace.tuple CoverMap.id (CoverMap.const x) \lemma power-ratio-test-inf {X : PseudoNormedRing} (cs : Series X) (b : Series Real) (bp : \Pi (n : Nat) -> norm (cs (suc n)) <= norm (cs n) * b n) (bl : RealNormed.IsLimit b 0) : IsPowerSeriesConv cs => \lam a>=0 => power-ratio-test (\lam j => norm>=0) bp bl a>=0 $ rewrite Ring.zro_*-left zro<ide